AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.050 | 0.826 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.662 |
Model: | OLS | Adj. R-squared: | 0.608 |
Method: | Least Squares | F-statistic: | 12.38 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.000102 |
Time: | 22:53:55 | Log-Likelihood: | -100.65 |
No. Observations: | 23 | AIC: | 209.3 |
Df Residuals: | 19 | BIC: | 213.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -17.2763 | 97.251 | -0.178 | 0.861 | -220.825 186.272 |
C(dose)[T.1] | 164.6799 | 140.279 | 1.174 | 0.255 | -128.928 458.288 |
expression | 11.5870 | 15.732 | 0.737 | 0.470 | -21.341 44.515 |
expression:C(dose)[T.1] | -17.4949 | 21.706 | -0.806 | 0.430 | -62.926 27.937 |
Omnibus: | 0.564 | Durbin-Watson: | 1.904 |
Prob(Omnibus): | 0.754 | Jarque-Bera (JB): | 0.621 |
Skew: | -0.112 | Prob(JB): | 0.733 |
Kurtosis: | 2.227 | Cond. No. | 276. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.57 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 2.76e-05 |
Time: | 22:53:55 | Log-Likelihood: | -101.03 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 39.4225 | 66.559 | 0.592 | 0.560 | -99.416 178.261 |
C(dose)[T.1] | 51.9537 | 10.732 | 4.841 | 0.000 | 29.566 74.341 |
expression | 2.3967 | 10.744 | 0.223 | 0.826 | -20.014 24.808 |
Omnibus: | 0.121 | Durbin-Watson: | 1.934 |
Prob(Omnibus): | 0.941 | Jarque-Bera (JB): | 0.344 |
Skew: | 0.022 | Prob(JB): | 0.842 |
Kurtosis: | 2.402 | Cond. No. | 101. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:53:55 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.240 |
Model: | OLS | Adj. R-squared: | 0.204 |
Method: | Least Squares | F-statistic: | 6.622 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0177 |
Time: | 22:53:55 | Log-Likelihood: | -109.95 |
No. Observations: | 23 | AIC: | 223.9 |
Df Residuals: | 21 | BIC: | 226.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -129.4445 | 81.522 | -1.588 | 0.127 | -298.978 40.089 |
expression | 32.4510 | 12.610 | 2.573 | 0.018 | 6.227 58.675 |
Omnibus: | 1.088 | Durbin-Watson: | 2.398 |
Prob(Omnibus): | 0.580 | Jarque-Bera (JB): | 0.454 |
Skew: | 0.342 | Prob(JB): | 0.797 |
Kurtosis: | 3.081 | Cond. No. | 85.7 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.397 | 0.541 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.472 |
Model: | OLS | Adj. R-squared: | 0.328 |
Method: | Least Squares | F-statistic: | 3.278 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0625 |
Time: | 22:53:55 | Log-Likelihood: | -70.510 |
No. Observations: | 15 | AIC: | 149.0 |
Df Residuals: | 11 | BIC: | 151.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 45.9432 | 133.122 | 0.345 | 0.737 | -247.056 338.942 |
C(dose)[T.1] | -11.8622 | 180.919 | -0.066 | 0.949 | -410.063 386.339 |
expression | 3.9439 | 24.341 | 0.162 | 0.874 | -49.630 57.517 |
expression:C(dose)[T.1] | 11.3174 | 33.188 | 0.341 | 0.740 | -61.729 84.364 |
Omnibus: | 2.028 | Durbin-Watson: | 0.740 |
Prob(Omnibus): | 0.363 | Jarque-Bera (JB): | 1.568 |
Skew: | -0.717 | Prob(JB): | 0.457 |
Kurtosis: | 2.327 | Cond. No. | 172. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.466 |
Model: | OLS | Adj. R-squared: | 0.377 |
Method: | Least Squares | F-statistic: | 5.245 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0231 |
Time: | 22:53:55 | Log-Likelihood: | -70.589 |
No. Observations: | 15 | AIC: | 147.2 |
Df Residuals: | 12 | BIC: | 149.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 12.7792 | 87.491 | 0.146 | 0.886 | -177.848 203.407 |
C(dose)[T.1] | 49.5880 | 15.498 | 3.200 | 0.008 | 15.820 83.356 |
expression | 10.0316 | 15.925 | 0.630 | 0.541 | -24.667 44.730 |
Omnibus: | 2.527 | Durbin-Watson: | 0.823 |
Prob(Omnibus): | 0.283 | Jarque-Bera (JB): | 1.896 |
Skew: | -0.817 | Prob(JB): | 0.388 |
Kurtosis: | 2.395 | Cond. No. | 64.1 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:53:55 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.011 |
Model: | OLS | Adj. R-squared: | -0.065 |
Method: | Least Squares | F-statistic: | 0.1473 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.707 |
Time: | 22:53:55 | Log-Likelihood: | -75.216 |
No. Observations: | 15 | AIC: | 154.4 |
Df Residuals: | 13 | BIC: | 155.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 50.3187 | 113.396 | 0.444 | 0.665 | -194.657 295.295 |
expression | 7.9876 | 20.812 | 0.384 | 0.707 | -36.974 52.949 |
Omnibus: | 0.422 | Durbin-Watson: | 1.675 |
Prob(Omnibus): | 0.810 | Jarque-Bera (JB): | 0.508 |
Skew: | 0.034 | Prob(JB): | 0.776 |
Kurtosis: | 2.101 | Cond. No. | 63.2 |