AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.000 0.997 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.660
Model: OLS Adj. R-squared: 0.607
Method: Least Squares F-statistic: 12.30
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000106
Time: 03:57:38 Log-Likelihood: -100.69
No. Observations: 23 AIC: 209.4
Df Residuals: 19 BIC: 213.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 25.4631 51.742 0.492 0.628 -82.834 133.760
C(dose)[T.1] 111.4348 74.250 1.501 0.150 -43.971 266.841
expression 5.6217 10.048 0.559 0.582 -15.409 26.652
expression:C(dose)[T.1] -11.2095 14.221 -0.788 0.440 -40.975 18.556
Omnibus: 0.158 Durbin-Watson: 1.824
Prob(Omnibus): 0.924 Jarque-Bera (JB): 0.356
Skew: 0.124 Prob(JB): 0.837
Kurtosis: 2.443 Cond. No. 118.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.49
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.83e-05
Time: 03:57:39 Log-Likelihood: -101.06
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.0754 36.520 1.481 0.154 -22.105 130.256
C(dose)[T.1] 53.3335 8.825 6.044 0.000 34.925 71.742
expression 0.0260 7.043 0.004 0.997 -14.666 14.718
Omnibus: 0.320 Durbin-Watson: 1.888
Prob(Omnibus): 0.852 Jarque-Bera (JB): 0.484
Skew: 0.059 Prob(JB): 0.785
Kurtosis: 2.300 Cond. No. 45.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:57:39 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.008
Model: OLS Adj. R-squared: -0.039
Method: Least Squares F-statistic: 0.1726
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.682
Time: 03:57:39 Log-Likelihood: -113.01
No. Observations: 23 AIC: 230.0
Df Residuals: 21 BIC: 232.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 55.0070 59.916 0.918 0.369 -69.595 179.609
expression 4.7703 11.483 0.415 0.682 -19.110 28.651
Omnibus: 3.514 Durbin-Watson: 2.426
Prob(Omnibus): 0.173 Jarque-Bera (JB): 1.666
Skew: 0.321 Prob(JB): 0.435
Kurtosis: 1.849 Cond. No. 45.1

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.410 0.534 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.568
Model: OLS Adj. R-squared: 0.451
Method: Least Squares F-statistic: 4.829
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0221
Time: 03:57:39 Log-Likelihood: -68.998
No. Observations: 15 AIC: 146.0
Df Residuals: 11 BIC: 148.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 136.5268 124.378 1.098 0.296 -137.228 410.282
C(dose)[T.1] -291.5760 206.200 -1.414 0.185 -745.420 162.268
expression -11.4215 20.484 -0.558 0.588 -56.506 33.663
expression:C(dose)[T.1] 49.6054 30.854 1.608 0.136 -18.304 117.514
Omnibus: 0.185 Durbin-Watson: 1.360
Prob(Omnibus): 0.911 Jarque-Bera (JB): 0.378
Skew: -0.145 Prob(JB): 0.828
Kurtosis: 2.278 Cond. No. 251.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.467
Model: OLS Adj. R-squared: 0.378
Method: Least Squares F-statistic: 5.257
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0229
Time: 03:57:39 Log-Likelihood: -70.581
No. Observations: 15 AIC: 147.2
Df Residuals: 12 BIC: 149.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 4.2532 99.249 0.043 0.967 -211.992 220.499
C(dose)[T.1] 38.0750 23.256 1.637 0.128 -12.596 88.746
expression 10.4424 16.298 0.641 0.534 -25.069 45.954
Omnibus: 2.280 Durbin-Watson: 0.690
Prob(Omnibus): 0.320 Jarque-Bera (JB): 1.700
Skew: -0.774 Prob(JB): 0.427
Kurtosis: 2.430 Cond. No. 89.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:57:39 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.348
Model: OLS Adj. R-squared: 0.298
Method: Least Squares F-statistic: 6.937
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0206
Time: 03:57:39 Log-Likelihood: -72.093
No. Observations: 15 AIC: 148.2
Df Residuals: 13 BIC: 149.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -107.2458 76.721 -1.398 0.186 -272.991 58.500
expression 30.3591 11.527 2.634 0.021 5.458 55.261
Omnibus: 1.772 Durbin-Watson: 0.919
Prob(Omnibus): 0.412 Jarque-Bera (JB): 0.942
Skew: -0.611 Prob(JB): 0.624
Kurtosis: 2.882 Cond. No. 63.6