AIM Score vs. Gene Expression 
		Full X range:
		
		 
			
		
		Auto X range:
		
		 
		
		
		
		Group Comparisons: Boxplots
		
		 
		
		
		 CP73 
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic |   p-value  |   df difference  |  
		 |  0.364  |   0.553  |   1.0  |  
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.704 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.657 | 
  | Method: |              Least Squares |     F-statistic:        |     15.07 | 
  | Date: |              Mon, 03 Nov 2025 |    Prob (F-statistic): |  2.92e-05 | 
  | Time: |                  20:58:02 |        Log-Likelihood:     |   -99.100 | 
  | No. Observations: |           23 |         AIC:                |     206.2 | 
  | Df Residuals: |               19 |         BIC:                |     210.7 | 
  | Df Model: |                    3 |                             |        |    
              |                 coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |                  108.1584 |     53.747 |      2.012 |   0.059 |     -4.336   220.653 | 
  | C(dose)[T.1] |               -63.5688 |     67.074 |     -0.948 |   0.355 |   -203.956    76.818 | 
  | expression |                 -10.5919 |     10.492 |     -1.009 |   0.325 |    -32.553    11.369 | 
  | expression:C(dose)[T.1] |     23.5033 |     13.278 |      1.770 |   0.093 |     -4.289    51.295 | 
  | Omnibus: |         0.343 |    Durbin-Watson:      |     1.755 | 
  | Prob(Omnibus): |   0.842 |    Jarque-Bera (JB):   |     0.503 | 
  | Skew: |           -0.180 |    Prob(JB):           |     0.778 | 
  | Kurtosis: |        2.372 |    Cond. No.           |      116. | 
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.655 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.621 | 
  | Method: |              Least Squares |     F-statistic:        |     19.01 | 
  | Date: |              Mon, 03 Nov 2025 |    Prob (F-statistic): |  2.37e-05 | 
  | Time: |                  20:58:02 |        Log-Likelihood:     |   -100.86 | 
  | No. Observations: |           23 |         AIC:                |     207.7 | 
  | Df Residuals: |               20 |         BIC:                |     211.1 | 
  | Df Model: |                    2 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |        33.4098 |     34.976 |      0.955 |   0.351 |    -39.549   106.369 | 
  | C(dose)[T.1] |     54.2254 |      8.815 |      6.152 |   0.000 |     35.838    72.613 | 
  | expression |        4.0833 |      6.765 |      0.604 |   0.553 |    -10.028    18.194 | 
  | Omnibus: |         0.410 |    Durbin-Watson:      |     1.763 | 
  | Prob(Omnibus): |   0.815 |    Jarque-Bera (JB):   |     0.551 | 
  | Skew: |            0.199 |    Prob(JB):           |     0.759 | 
  | Kurtosis: |        2.355 |    Cond. No.           |      42.3 | 
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.649 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.632 | 
  | Method: |              Least Squares |     F-statistic:        |     38.84 | 
  | Date: |              Mon, 03 Nov 2025 |    Prob (F-statistic): |  3.51e-06 | 
  | Time: |                  20:58:02 |        Log-Likelihood:     |   -101.06 | 
  | No. Observations: |           23 |         AIC:                |     206.1 | 
  | Df Residuals: |               21 |         BIC:                |     208.4 | 
  | Df Model: |                    1 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |        54.2083 |      5.919 |      9.159 |   0.000 |     41.900    66.517 | 
  | C(dose)[T.1] |     53.3371 |      8.558 |      6.232 |   0.000 |     35.539    71.135 | 
  | Omnibus: |         0.322 |    Durbin-Watson:      |     1.888 | 
  | Prob(Omnibus): |   0.851 |    Jarque-Bera (JB):   |     0.485 | 
  | Skew: |            0.060 |    Prob(JB):           |     0.785 | 
  | Kurtosis: |        2.299 |    Cond. No.           |      2.57 | 
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.003 | 
  | Model: |                    OLS |          Adj. R-squared:     |    -0.044 | 
  | Method: |              Least Squares |     F-statistic:        |   0.06693 | 
  | Date: |              Mon, 03 Nov 2025 |    Prob (F-statistic): |    0.798 |  
  | Time: |                  20:58:02 |        Log-Likelihood:     |   -113.07 | 
  | No. Observations: |           23 |         AIC:                |     230.1 | 
  | Df Residuals: |               21 |         BIC:                |     232.4 | 
  | Df Model: |                    1 |                             |        |    
        |          coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |      94.0063 |     55.699 |      1.688 |   0.106 |    -21.825   209.838 | 
  | expression |     -2.8638 |     11.069 |     -0.259 |   0.798 |    -25.884    20.156 | 
  | Omnibus: |         2.728 |    Durbin-Watson:      |     2.440 | 
  | Prob(Omnibus): |   0.256 |    Jarque-Bera (JB):   |     1.519 | 
  | Skew: |            0.334 |    Prob(JB):           |     0.468 | 
  | Kurtosis: |        1.932 |    Cond. No.           |      40.4 | 
			 
		
			
		
		 
	
		
		 CP101 
		
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic |   p-value  |   df difference  |  
		 |  0.938  |   0.352  |   1.0  |  
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.503 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.368 | 
  | Method: |              Least Squares |     F-statistic:        |     3.716 | 
  | Date: |              Mon, 03 Nov 2025 |    Prob (F-statistic): |   0.0457 |  
  | Time: |                  20:58:02 |        Log-Likelihood:     |   -70.052 | 
  | No. Observations: |           15 |         AIC:                |     148.1 | 
  | Df Residuals: |               11 |         BIC:                |     150.9 | 
  | Df Model: |                    3 |                             |        |    
              |                 coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |                  168.5604 |     95.212 |      1.770 |   0.104 |    -41.000   378.121 | 
  | C(dose)[T.1] |               -27.9805 |    135.154 |     -0.207 |   0.840 |   -325.453   269.492 | 
  | expression |                 -19.1590 |     17.908 |     -1.070 |   0.308 |    -58.574    20.256 | 
  | expression:C(dose)[T.1] |     14.5541 |     25.623 |      0.568 |   0.581 |    -41.841    70.949 | 
  | Omnibus: |         2.249 |    Durbin-Watson:      |     0.980 | 
  | Prob(Omnibus): |   0.325 |    Jarque-Bera (JB):   |     1.586 | 
  | Skew: |           -0.765 |    Prob(JB):           |     0.452 | 
  | Kurtosis: |        2.559 |    Cond. No.           |      125. | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.489 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.404 | 
  | Method: |              Least Squares |     F-statistic:        |     5.736 | 
  | Date: |              Mon, 03 Nov 2025 |    Prob (F-statistic): |   0.0179 |  
  | Time: |                  20:58:02 |        Log-Likelihood:     |   -70.268 | 
  | No. Observations: |           15 |         AIC:                |     146.5 | 
  | Df Residuals: |               12 |         BIC:                |     148.7 | 
  | Df Model: |                    2 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |       131.0334 |     66.598 |      1.968 |   0.073 |    -14.070   276.137 | 
  | C(dose)[T.1] |     48.2742 |     15.188 |      3.178 |   0.008 |     15.182    81.366 | 
  | expression |      -12.0497 |     12.441 |     -0.969 |   0.352 |    -39.157    15.057 | 
  | Omnibus: |         1.857 |    Durbin-Watson:      |     0.876 | 
  | Prob(Omnibus): |   0.395 |    Jarque-Bera (JB):   |     1.420 | 
  | Skew: |           -0.691 |    Prob(JB):           |     0.492 | 
  | Kurtosis: |        2.399 |    Cond. No.           |      48.3 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.449 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.406 | 
  | Method: |              Least Squares |     F-statistic:        |     10.58 | 
  | Date: |              Mon, 03 Nov 2025 |    Prob (F-statistic): |   0.00629 | 
  | Time: |                  20:58:02 |        Log-Likelihood:     |   -70.833 | 
  | No. Observations: |           15 |         AIC:                |     145.7 | 
  | Df Residuals: |               13 |         BIC:                |     147.1 | 
  | Df Model: |                    1 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |        67.4286 |     11.044 |      6.106 |   0.000 |     43.570    91.287 | 
  | C(dose)[T.1] |     49.1964 |     15.122 |      3.253 |   0.006 |     16.527    81.866 | 
  | Omnibus: |         2.713 |    Durbin-Watson:      |     0.810 | 
  | Prob(Omnibus): |   0.258 |    Jarque-Bera (JB):   |     1.868 | 
  | Skew: |           -0.843 |    Prob(JB):           |     0.393 | 
  | Kurtosis: |        2.619 |    Cond. No.           |      2.70 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.058 | 
  | Model: |                    OLS |          Adj. R-squared:     |    -0.014 | 
  | Method: |              Least Squares |     F-statistic:        |    0.8053 | 
  | Date: |              Mon, 03 Nov 2025 |    Prob (F-statistic): |    0.386 |  
  | Time: |                  20:58:02 |        Log-Likelihood:     |   -74.849 | 
  | No. Observations: |           15 |         AIC:                |     153.7 | 
  | Df Residuals: |               13 |         BIC:                |     155.1 | 
  | Df Model: |                    1 |                             |        |    
        |          coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |     169.7642 |     85.371 |      1.989 |   0.068 |    -14.669   354.197 | 
  | expression |    -14.5287 |     16.190 |     -0.897 |   0.386 |    -49.505    20.448 | 
  | Omnibus: |         1.521 |    Durbin-Watson:      |     1.696 | 
  | Prob(Omnibus): |   0.467 |    Jarque-Bera (JB):   |     0.977 | 
  | Skew: |            0.303 |    Prob(JB):           |     0.614 | 
  | Kurtosis: |        1.906 |    Cond. No.           |      47.3 |