AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.364 0.553 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.704
Model: OLS Adj. R-squared: 0.657
Method: Least Squares F-statistic: 15.07
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.92e-05
Time: 05:08:43 Log-Likelihood: -99.100
No. Observations: 23 AIC: 206.2
Df Residuals: 19 BIC: 210.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 108.1584 53.747 2.012 0.059 -4.336 220.653
C(dose)[T.1] -63.5688 67.074 -0.948 0.355 -203.956 76.818
expression -10.5919 10.492 -1.009 0.325 -32.553 11.369
expression:C(dose)[T.1] 23.5033 13.278 1.770 0.093 -4.289 51.295
Omnibus: 0.343 Durbin-Watson: 1.755
Prob(Omnibus): 0.842 Jarque-Bera (JB): 0.503
Skew: -0.180 Prob(JB): 0.778
Kurtosis: 2.372 Cond. No. 116.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.655
Model: OLS Adj. R-squared: 0.621
Method: Least Squares F-statistic: 19.01
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.37e-05
Time: 05:08:43 Log-Likelihood: -100.86
No. Observations: 23 AIC: 207.7
Df Residuals: 20 BIC: 211.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 33.4098 34.976 0.955 0.351 -39.549 106.369
C(dose)[T.1] 54.2254 8.815 6.152 0.000 35.838 72.613
expression 4.0833 6.765 0.604 0.553 -10.028 18.194
Omnibus: 0.410 Durbin-Watson: 1.763
Prob(Omnibus): 0.815 Jarque-Bera (JB): 0.551
Skew: 0.199 Prob(JB): 0.759
Kurtosis: 2.355 Cond. No. 42.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:08:43 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.003
Model: OLS Adj. R-squared: -0.044
Method: Least Squares F-statistic: 0.06693
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.798
Time: 05:08:43 Log-Likelihood: -113.07
No. Observations: 23 AIC: 230.1
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 94.0063 55.699 1.688 0.106 -21.825 209.838
expression -2.8638 11.069 -0.259 0.798 -25.884 20.156
Omnibus: 2.728 Durbin-Watson: 2.440
Prob(Omnibus): 0.256 Jarque-Bera (JB): 1.519
Skew: 0.334 Prob(JB): 0.468
Kurtosis: 1.932 Cond. No. 40.4

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.938 0.352 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.503
Model: OLS Adj. R-squared: 0.368
Method: Least Squares F-statistic: 3.716
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0457
Time: 05:08:43 Log-Likelihood: -70.052
No. Observations: 15 AIC: 148.1
Df Residuals: 11 BIC: 150.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 168.5604 95.212 1.770 0.104 -41.000 378.121
C(dose)[T.1] -27.9805 135.154 -0.207 0.840 -325.453 269.492
expression -19.1590 17.908 -1.070 0.308 -58.574 20.256
expression:C(dose)[T.1] 14.5541 25.623 0.568 0.581 -41.841 70.949
Omnibus: 2.249 Durbin-Watson: 0.980
Prob(Omnibus): 0.325 Jarque-Bera (JB): 1.586
Skew: -0.765 Prob(JB): 0.452
Kurtosis: 2.559 Cond. No. 125.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.489
Model: OLS Adj. R-squared: 0.404
Method: Least Squares F-statistic: 5.736
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0179
Time: 05:08:43 Log-Likelihood: -70.268
No. Observations: 15 AIC: 146.5
Df Residuals: 12 BIC: 148.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 131.0334 66.598 1.968 0.073 -14.070 276.137
C(dose)[T.1] 48.2742 15.188 3.178 0.008 15.182 81.366
expression -12.0497 12.441 -0.969 0.352 -39.157 15.057
Omnibus: 1.857 Durbin-Watson: 0.876
Prob(Omnibus): 0.395 Jarque-Bera (JB): 1.420
Skew: -0.691 Prob(JB): 0.492
Kurtosis: 2.399 Cond. No. 48.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:08:43 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.058
Model: OLS Adj. R-squared: -0.014
Method: Least Squares F-statistic: 0.8053
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.386
Time: 05:08:43 Log-Likelihood: -74.849
No. Observations: 15 AIC: 153.7
Df Residuals: 13 BIC: 155.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 169.7642 85.371 1.989 0.068 -14.669 354.197
expression -14.5287 16.190 -0.897 0.386 -49.505 20.448
Omnibus: 1.521 Durbin-Watson: 1.696
Prob(Omnibus): 0.467 Jarque-Bera (JB): 0.977
Skew: 0.303 Prob(JB): 0.614
Kurtosis: 1.906 Cond. No. 47.3