AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.147 0.297 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.677
Model: OLS Adj. R-squared: 0.626
Method: Least Squares F-statistic: 13.27
Date: Thu, 21 Nov 2024 Prob (F-statistic): 6.62e-05
Time: 04:39:09 Log-Likelihood: -100.11
No. Observations: 23 AIC: 208.2
Df Residuals: 19 BIC: 212.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 173.9514 94.110 1.848 0.080 -23.023 370.926
C(dose)[T.1] -88.5555 198.201 -0.447 0.660 -503.395 326.284
expression -15.0040 11.768 -1.275 0.218 -39.636 9.628
expression:C(dose)[T.1] 17.7437 24.564 0.722 0.479 -33.670 69.158
Omnibus: 0.196 Durbin-Watson: 1.810
Prob(Omnibus): 0.906 Jarque-Bera (JB): 0.403
Skew: 0.036 Prob(JB): 0.817
Kurtosis: 2.355 Cond. No. 439.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.668
Model: OLS Adj. R-squared: 0.635
Method: Least Squares F-statistic: 20.13
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.62e-05
Time: 04:39:09 Log-Likelihood: -100.42
No. Observations: 23 AIC: 206.8
Df Residuals: 20 BIC: 210.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 141.4495 81.662 1.732 0.099 -28.895 311.794
C(dose)[T.1] 54.4738 8.594 6.338 0.000 36.546 72.401
expression -10.9315 10.206 -1.071 0.297 -32.220 10.357
Omnibus: 0.140 Durbin-Watson: 1.849
Prob(Omnibus): 0.932 Jarque-Bera (JB): 0.045
Skew: -0.065 Prob(JB): 0.978
Kurtosis: 2.825 Cond. No. 157.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:39:09 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.001
Model: OLS Adj. R-squared: -0.046
Method: Least Squares F-statistic: 0.02950
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.865
Time: 04:39:09 Log-Likelihood: -113.09
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 103.3612 137.859 0.750 0.462 -183.333 390.055
expression -2.9443 17.144 -0.172 0.865 -38.596 32.708
Omnibus: 3.509 Durbin-Watson: 2.480
Prob(Omnibus): 0.173 Jarque-Bera (JB): 1.647
Skew: 0.311 Prob(JB): 0.439
Kurtosis: 1.846 Cond. No. 156.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.372 0.554 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.514
Model: OLS Adj. R-squared: 0.381
Method: Least Squares F-statistic: 3.872
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0410
Time: 04:39:09 Log-Likelihood: -69.894
No. Observations: 15 AIC: 147.8
Df Residuals: 11 BIC: 150.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 234.8208 160.185 1.466 0.171 -117.743 587.385
C(dose)[T.1] -285.7074 319.104 -0.895 0.390 -988.051 416.636
expression -19.5900 18.700 -1.048 0.317 -60.748 21.568
expression:C(dose)[T.1] 39.6290 37.923 1.045 0.318 -43.838 123.096
Omnibus: 3.860 Durbin-Watson: 1.350
Prob(Omnibus): 0.145 Jarque-Bera (JB): 2.277
Skew: -0.954 Prob(JB): 0.320
Kurtosis: 3.030 Cond. No. 426.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.465
Model: OLS Adj. R-squared: 0.376
Method: Least Squares F-statistic: 5.222
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0234
Time: 04:39:09 Log-Likelihood: -70.604
No. Observations: 15 AIC: 147.2
Df Residuals: 12 BIC: 149.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 152.4832 140.000 1.089 0.297 -152.551 457.517
C(dose)[T.1] 47.3495 15.795 2.998 0.011 12.935 81.764
expression -9.9540 16.331 -0.610 0.554 -45.535 25.627
Omnibus: 2.088 Durbin-Watson: 0.974
Prob(Omnibus): 0.352 Jarque-Bera (JB): 1.511
Skew: -0.738 Prob(JB): 0.470
Kurtosis: 2.510 Cond. No. 156.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:39:09 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.065
Model: OLS Adj. R-squared: -0.007
Method: Least Squares F-statistic: 0.9025
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.359
Time: 04:39:09 Log-Likelihood: -74.797
No. Observations: 15 AIC: 153.6
Df Residuals: 13 BIC: 155.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 257.0556 172.271 1.492 0.160 -115.112 629.223
expression -19.3455 20.364 -0.950 0.359 -63.339 24.648
Omnibus: 1.450 Durbin-Watson: 1.716
Prob(Omnibus): 0.484 Jarque-Bera (JB): 0.991
Skew: 0.341 Prob(JB): 0.609
Kurtosis: 1.941 Cond. No. 150.