AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.845 0.369 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.664
Model: OLS Adj. R-squared: 0.611
Method: Least Squares F-statistic: 12.52
Date: Thu, 21 Nov 2024 Prob (F-statistic): 9.53e-05
Time: 05:02:22 Log-Likelihood: -100.56
No. Observations: 23 AIC: 209.1
Df Residuals: 19 BIC: 213.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 27.7087 53.732 0.516 0.612 -84.753 140.171
C(dose)[T.1] 39.7143 74.926 0.530 0.602 -117.108 196.537
expression 4.0437 8.146 0.496 0.625 -13.007 21.094
expression:C(dose)[T.1] 2.3568 11.607 0.203 0.841 -21.937 26.651
Omnibus: 1.725 Durbin-Watson: 1.860
Prob(Omnibus): 0.422 Jarque-Bera (JB): 0.994
Skew: -0.010 Prob(JB): 0.608
Kurtosis: 1.982 Cond. No. 146.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.663
Model: OLS Adj. R-squared: 0.630
Method: Least Squares F-statistic: 19.70
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.87e-05
Time: 05:02:22 Log-Likelihood: -100.59
No. Observations: 23 AIC: 207.2
Df Residuals: 20 BIC: 210.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 20.1010 37.578 0.535 0.599 -58.286 98.488
C(dose)[T.1] 54.8185 8.740 6.272 0.000 36.587 73.050
expression 5.2046 5.662 0.919 0.369 -6.606 17.016
Omnibus: 1.672 Durbin-Watson: 1.876
Prob(Omnibus): 0.433 Jarque-Bera (JB): 0.987
Skew: -0.056 Prob(JB): 0.610
Kurtosis: 1.991 Cond. No. 58.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:02:22 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.001
Model: OLS Adj. R-squared: -0.047
Method: Least Squares F-statistic: 0.02063
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.887
Time: 05:02:22 Log-Likelihood: -113.09
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 88.3392 60.462 1.461 0.159 -37.399 214.077
expression -1.3435 9.355 -0.144 0.887 -20.798 18.111
Omnibus: 3.424 Durbin-Watson: 2.486
Prob(Omnibus): 0.181 Jarque-Bera (JB): 1.609
Skew: 0.299 Prob(JB): 0.447
Kurtosis: 1.850 Cond. No. 55.5

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.963 0.346 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.505
Model: OLS Adj. R-squared: 0.370
Method: Least Squares F-statistic: 3.744
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0448
Time: 05:02:22 Log-Likelihood: -70.023
No. Observations: 15 AIC: 148.0
Df Residuals: 11 BIC: 150.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 93.4383 71.102 1.314 0.216 -63.056 249.933
C(dose)[T.1] 114.5961 112.459 1.019 0.330 -132.924 362.116
expression -4.3701 11.793 -0.371 0.718 -30.326 21.585
expression:C(dose)[T.1] -10.9716 18.701 -0.587 0.569 -52.132 30.189
Omnibus: 2.361 Durbin-Watson: 0.823
Prob(Omnibus): 0.307 Jarque-Bera (JB): 1.500
Skew: -0.545 Prob(JB): 0.472
Kurtosis: 1.898 Cond. No. 114.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.490
Model: OLS Adj. R-squared: 0.405
Method: Least Squares F-statistic: 5.758
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0177
Time: 05:02:22 Log-Likelihood: -70.254
No. Observations: 15 AIC: 146.5
Df Residuals: 12 BIC: 148.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 119.4048 54.105 2.207 0.048 1.519 237.290
C(dose)[T.1] 49.2535 15.144 3.252 0.007 16.258 82.249
expression -8.7330 8.899 -0.981 0.346 -28.122 10.656
Omnibus: 2.377 Durbin-Watson: 0.954
Prob(Omnibus): 0.305 Jarque-Bera (JB): 1.546
Skew: -0.570 Prob(JB): 0.462
Kurtosis: 1.916 Cond. No. 44.4

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:02:22 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.040
Model: OLS Adj. R-squared: -0.034
Method: Least Squares F-statistic: 0.5405
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.475
Time: 05:02:22 Log-Likelihood: -74.995
No. Observations: 15 AIC: 154.0
Df Residuals: 13 BIC: 155.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 145.0119 70.545 2.056 0.060 -7.390 297.414
expression -8.6219 11.727 -0.735 0.475 -33.957 16.713
Omnibus: 1.577 Durbin-Watson: 1.757
Prob(Omnibus): 0.455 Jarque-Bera (JB): 0.874
Skew: 0.113 Prob(JB): 0.646
Kurtosis: 1.839 Cond. No. 43.8