AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.520 0.479 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.666
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 12.64
Date: Thu, 21 Nov 2024 Prob (F-statistic): 8.96e-05
Time: 04:40:01 Log-Likelihood: -100.48
No. Observations: 23 AIC: 209.0
Df Residuals: 19 BIC: 213.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 66.0714 78.825 0.838 0.412 -98.910 231.053
C(dose)[T.1] -19.3413 100.607 -0.192 0.850 -229.914 191.231
expression -3.0647 20.303 -0.151 0.882 -45.560 39.431
expression:C(dose)[T.1] 17.0950 24.862 0.688 0.500 -34.941 69.131
Omnibus: 0.271 Durbin-Watson: 2.017
Prob(Omnibus): 0.873 Jarque-Bera (JB): 0.454
Skew: -0.110 Prob(JB): 0.797
Kurtosis: 2.347 Cond. No. 140.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.658
Model: OLS Adj. R-squared: 0.624
Method: Least Squares F-statistic: 19.24
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.19e-05
Time: 04:40:01 Log-Likelihood: -100.77
No. Observations: 23 AIC: 207.5
Df Residuals: 20 BIC: 210.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 21.9405 45.154 0.486 0.632 -72.250 116.131
C(dose)[T.1] 49.4712 10.184 4.858 0.000 28.228 70.715
expression 8.3361 11.562 0.721 0.479 -15.782 32.455
Omnibus: 0.251 Durbin-Watson: 1.773
Prob(Omnibus): 0.882 Jarque-Bera (JB): 0.440
Skew: 0.004 Prob(JB): 0.803
Kurtosis: 2.323 Cond. No. 46.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:40:01 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.254
Model: OLS Adj. R-squared: 0.219
Method: Least Squares F-statistic: 7.164
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0141
Time: 04:40:01 Log-Likelihood: -109.73
No. Observations: 23 AIC: 223.5
Df Residuals: 21 BIC: 225.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -75.4302 58.300 -1.294 0.210 -196.671 45.810
expression 37.9090 14.163 2.677 0.014 8.455 67.363
Omnibus: 6.516 Durbin-Watson: 1.874
Prob(Omnibus): 0.038 Jarque-Bera (JB): 1.860
Skew: 0.139 Prob(JB): 0.395
Kurtosis: 1.635 Cond. No. 40.8

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.571 0.464 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.601
Model: OLS Adj. R-squared: 0.493
Method: Least Squares F-statistic: 5.533
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0146
Time: 04:40:01 Log-Likelihood: -68.401
No. Observations: 15 AIC: 144.8
Df Residuals: 11 BIC: 147.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 234.3430 138.446 1.693 0.119 -70.375 539.061
C(dose)[T.1] -260.6323 163.336 -1.596 0.139 -620.132 98.868
expression -41.6922 34.487 -1.209 0.252 -117.598 34.214
expression:C(dose)[T.1] 74.7679 39.835 1.877 0.087 -12.908 162.444
Omnibus: 0.145 Durbin-Watson: 1.543
Prob(Omnibus): 0.930 Jarque-Bera (JB): 0.231
Skew: 0.184 Prob(JB): 0.891
Kurtosis: 2.517 Cond. No. 155.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.474
Model: OLS Adj. R-squared: 0.386
Method: Least Squares F-statistic: 5.403
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0212
Time: 04:40:01 Log-Likelihood: -70.484
No. Observations: 15 AIC: 147.0
Df Residuals: 12 BIC: 149.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 9.9827 76.842 0.130 0.899 -157.441 177.407
C(dose)[T.1] 44.6433 16.516 2.703 0.019 8.658 80.629
expression 14.3489 18.988 0.756 0.464 -27.021 55.719
Omnibus: 2.458 Durbin-Watson: 0.910
Prob(Omnibus): 0.293 Jarque-Bera (JB): 1.554
Skew: -0.779 Prob(JB): 0.460
Kurtosis: 2.751 Cond. No. 44.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:40:01 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.153
Model: OLS Adj. R-squared: 0.088
Method: Least Squares F-statistic: 2.356
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.149
Time: 04:40:01 Log-Likelihood: -74.051
No. Observations: 15 AIC: 152.1
Df Residuals: 13 BIC: 153.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -44.3327 90.384 -0.490 0.632 -239.596 150.931
expression 33.0717 21.545 1.535 0.149 -13.472 79.616
Omnibus: 2.936 Durbin-Watson: 1.842
Prob(Omnibus): 0.230 Jarque-Bera (JB): 0.900
Skew: -0.389 Prob(JB): 0.638
Kurtosis: 3.914 Cond. No. 42.8