AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.616 0.442 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.660
Model: OLS Adj. R-squared: 0.606
Method: Least Squares F-statistic: 12.30
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000106
Time: 04:47:16 Log-Likelihood: -100.69
No. Observations: 23 AIC: 209.4
Df Residuals: 19 BIC: 213.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 70.9056 85.036 0.834 0.415 -107.076 248.887
C(dose)[T.1] 70.9439 96.448 0.736 0.471 -130.923 272.811
expression -2.9299 14.882 -0.197 0.846 -34.079 28.220
expression:C(dose)[T.1] -3.0374 16.820 -0.181 0.859 -38.243 32.168
Omnibus: 0.151 Durbin-Watson: 2.024
Prob(Omnibus): 0.927 Jarque-Bera (JB): 0.153
Skew: 0.143 Prob(JB): 0.926
Kurtosis: 2.721 Cond. No. 190.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.660
Model: OLS Adj. R-squared: 0.625
Method: Least Squares F-statistic: 19.37
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.09e-05
Time: 04:47:16 Log-Likelihood: -100.71
No. Observations: 23 AIC: 207.4
Df Residuals: 20 BIC: 210.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 84.4570 39.014 2.165 0.043 3.075 165.839
C(dose)[T.1] 53.6011 8.644 6.201 0.000 35.569 71.633
expression -5.3077 6.765 -0.785 0.442 -19.420 8.804
Omnibus: 0.088 Durbin-Watson: 2.011
Prob(Omnibus): 0.957 Jarque-Bera (JB): 0.173
Skew: 0.120 Prob(JB): 0.917
Kurtosis: 2.650 Cond. No. 53.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:47:16 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.005
Model: OLS Adj. R-squared: -0.042
Method: Least Squares F-statistic: 0.1062
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.748
Time: 04:47:16 Log-Likelihood: -113.05
No. Observations: 23 AIC: 230.1
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 100.7498 64.940 1.551 0.136 -34.300 235.799
expression -3.6752 11.278 -0.326 0.748 -27.129 19.778
Omnibus: 2.746 Durbin-Watson: 2.559
Prob(Omnibus): 0.253 Jarque-Bera (JB): 1.436
Skew: 0.279 Prob(JB): 0.488
Kurtosis: 1.910 Cond. No. 53.5

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.013 0.911 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.450
Model: OLS Adj. R-squared: 0.300
Method: Least Squares F-statistic: 3.003
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0767
Time: 04:47:16 Log-Likelihood: -70.813
No. Observations: 15 AIC: 149.6
Df Residuals: 11 BIC: 152.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 63.1456 133.728 0.472 0.646 -231.187 357.478
C(dose)[T.1] 74.0676 180.979 0.409 0.690 -324.265 472.400
expression 0.7344 22.838 0.032 0.975 -49.532 51.001
expression:C(dose)[T.1] -3.9603 29.725 -0.133 0.896 -69.384 61.464
Omnibus: 2.816 Durbin-Watson: 0.785
Prob(Omnibus): 0.245 Jarque-Bera (JB): 1.905
Skew: -0.856 Prob(JB): 0.386
Kurtosis: 2.660 Cond. No. 193.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.358
Method: Least Squares F-statistic: 4.897
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0279
Time: 04:47:16 Log-Likelihood: -70.825
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 76.7794 82.491 0.931 0.370 -102.952 256.511
C(dose)[T.1] 50.0788 17.518 2.859 0.014 11.911 88.247
expression -1.6034 14.007 -0.114 0.911 -32.122 28.915
Omnibus: 2.741 Durbin-Watson: 0.786
Prob(Omnibus): 0.254 Jarque-Bera (JB): 1.886
Skew: -0.848 Prob(JB): 0.389
Kurtosis: 2.622 Cond. No. 66.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:47:16 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.074
Model: OLS Adj. R-squared: 0.003
Method: Least Squares F-statistic: 1.045
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.325
Time: 04:47:16 Log-Likelihood: -74.720
No. Observations: 15 AIC: 153.4
Df Residuals: 13 BIC: 154.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -4.4308 96.471 -0.046 0.964 -212.845 203.983
expression 16.0149 15.668 1.022 0.325 -17.835 49.864
Omnibus: 0.201 Durbin-Watson: 1.520
Prob(Omnibus): 0.904 Jarque-Bera (JB): 0.395
Skew: 0.107 Prob(JB): 0.821
Kurtosis: 2.234 Cond. No. 62.3