AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.285 | 0.599 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.746 |
Model: | OLS | Adj. R-squared: | 0.706 |
Method: | Least Squares | F-statistic: | 18.61 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 7.01e-06 |
Time: | 05:11:39 | Log-Likelihood: | -97.342 |
No. Observations: | 23 | AIC: | 202.7 |
Df Residuals: | 19 | BIC: | 207.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 231.3204 | 114.322 | 2.023 | 0.057 | -7.957 470.598 |
C(dose)[T.1] | -715.7731 | 292.086 | -2.451 | 0.024 | -1327.116 -104.430 |
expression | -22.9410 | 14.792 | -1.551 | 0.137 | -53.901 8.019 |
expression:C(dose)[T.1] | 103.1545 | 39.301 | 2.625 | 0.017 | 20.896 185.413 |
Omnibus: | 2.023 | Durbin-Watson: | 1.712 |
Prob(Omnibus): | 0.364 | Jarque-Bera (JB): | 1.717 |
Skew: | -0.560 | Prob(JB): | 0.424 |
Kurtosis: | 2.267 | Cond. No. | 669. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.654 |
Model: | OLS | Adj. R-squared: | 0.619 |
Method: | Least Squares | F-statistic: | 18.90 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.46e-05 |
Time: | 05:11:39 | Log-Likelihood: | -100.90 |
No. Observations: | 23 | AIC: | 207.8 |
Df Residuals: | 20 | BIC: | 211.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 118.5065 | 120.525 | 0.983 | 0.337 | -132.905 369.918 |
C(dose)[T.1] | 50.5052 | 10.195 | 4.954 | 0.000 | 29.239 71.771 |
expression | -8.3284 | 15.592 | -0.534 | 0.599 | -40.853 24.196 |
Omnibus: | 0.336 | Durbin-Watson: | 1.896 |
Prob(Omnibus): | 0.845 | Jarque-Bera (JB): | 0.496 |
Skew: | -0.099 | Prob(JB): | 0.780 |
Kurtosis: | 2.308 | Cond. No. | 214. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:11:39 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.229 |
Model: | OLS | Adj. R-squared: | 0.193 |
Method: | Least Squares | F-statistic: | 6.252 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0208 |
Time: | 05:11:39 | Log-Likelihood: | -110.11 |
No. Observations: | 23 | AIC: | 224.2 |
Df Residuals: | 21 | BIC: | 226.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 446.2419 | 146.724 | 3.041 | 0.006 | 141.113 751.371 |
expression | -48.4969 | 19.396 | -2.500 | 0.021 | -88.833 -8.161 |
Omnibus: | 0.707 | Durbin-Watson: | 2.273 |
Prob(Omnibus): | 0.702 | Jarque-Bera (JB): | 0.465 |
Skew: | 0.334 | Prob(JB): | 0.793 |
Kurtosis: | 2.804 | Cond. No. | 178. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.680 | 0.426 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.479 |
Model: | OLS | Adj. R-squared: | 0.337 |
Method: | Least Squares | F-statistic: | 3.367 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0585 |
Time: | 05:11:39 | Log-Likelihood: | -70.415 |
No. Observations: | 15 | AIC: | 148.8 |
Df Residuals: | 11 | BIC: | 151.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -180.6176 | 554.942 | -0.325 | 0.751 | -1402.037 1040.802 |
C(dose)[T.1] | -7.1266 | 723.082 | -0.010 | 0.992 | -1598.619 1584.366 |
expression | 28.6495 | 64.082 | 0.447 | 0.663 | -112.394 169.693 |
expression:C(dose)[T.1] | 7.1190 | 84.098 | 0.085 | 0.934 | -177.980 192.218 |
Omnibus: | 1.053 | Durbin-Watson: | 0.855 |
Prob(Omnibus): | 0.591 | Jarque-Bera (JB): | 0.922 |
Skew: | -0.491 | Prob(JB): | 0.631 |
Kurtosis: | 2.285 | Cond. No. | 1.09e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.478 |
Model: | OLS | Adj. R-squared: | 0.391 |
Method: | Least Squares | F-statistic: | 5.502 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0202 |
Time: | 05:11:39 | Log-Likelihood: | -70.419 |
No. Observations: | 15 | AIC: | 146.8 |
Df Residuals: | 12 | BIC: | 149.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -216.4053 | 344.291 | -0.629 | 0.541 | -966.552 533.741 |
C(dose)[T.1] | 54.0659 | 16.410 | 3.295 | 0.006 | 18.311 89.821 |
expression | 32.7831 | 39.745 | 0.825 | 0.426 | -53.814 119.380 |
Omnibus: | 1.055 | Durbin-Watson: | 0.868 |
Prob(Omnibus): | 0.590 | Jarque-Bera (JB): | 0.921 |
Skew: | -0.495 | Prob(JB): | 0.631 |
Kurtosis: | 2.296 | Cond. No. | 393. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:11:39 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.006 |
Model: | OLS | Adj. R-squared: | -0.070 |
Method: | Least Squares | F-statistic: | 0.08487 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.775 |
Time: | 05:11:40 | Log-Likelihood: | -75.251 |
No. Observations: | 15 | AIC: | 154.5 |
Df Residuals: | 13 | BIC: | 155.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 216.5550 | 421.939 | 0.513 | 0.616 | -694.989 1128.099 |
expression | -14.3248 | 49.170 | -0.291 | 0.775 | -120.551 91.901 |
Omnibus: | 0.316 | Durbin-Watson: | 1.603 |
Prob(Omnibus): | 0.854 | Jarque-Bera (JB): | 0.459 |
Skew: | -0.022 | Prob(JB): | 0.795 |
Kurtosis: | 2.144 | Cond. No. | 362. |