AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
12.391 0.002 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.783
Model: OLS Adj. R-squared: 0.749
Method: Least Squares F-statistic: 22.91
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.58e-06
Time: 04:47:32 Log-Likelihood: -95.513
No. Observations: 23 AIC: 199.0
Df Residuals: 19 BIC: 203.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -67.1874 57.027 -1.178 0.253 -186.546 52.171
C(dose)[T.1] 65.2560 70.273 0.929 0.365 -81.827 212.339
expression 21.2253 9.934 2.137 0.046 0.433 42.018
expression:C(dose)[T.1] -1.1235 12.436 -0.090 0.929 -27.153 24.906
Omnibus: 1.711 Durbin-Watson: 1.990
Prob(Omnibus): 0.425 Jarque-Bera (JB): 1.140
Skew: 0.256 Prob(JB): 0.566
Kurtosis: 2.037 Cond. No. 159.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.783
Model: OLS Adj. R-squared: 0.762
Method: Least Squares F-statistic: 36.15
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.28e-07
Time: 04:47:32 Log-Likelihood: -95.518
No. Observations: 23 AIC: 197.0
Df Residuals: 20 BIC: 200.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -63.0872 33.661 -1.874 0.076 -133.304 7.129
C(dose)[T.1] 58.9411 7.073 8.334 0.000 44.188 73.695
expression 20.5084 5.826 3.520 0.002 8.355 32.662
Omnibus: 1.554 Durbin-Watson: 1.978
Prob(Omnibus): 0.460 Jarque-Bera (JB): 1.092
Skew: 0.256 Prob(JB): 0.579
Kurtosis: 2.064 Cond. No. 57.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:47:32 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.031
Model: OLS Adj. R-squared: -0.015
Method: Least Squares F-statistic: 0.6685
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.423
Time: 04:47:32 Log-Likelihood: -112.74
No. Observations: 23 AIC: 229.5
Df Residuals: 21 BIC: 231.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 26.1811 65.860 0.398 0.695 -110.783 163.145
expression 9.5794 11.716 0.818 0.423 -14.785 33.944
Omnibus: 3.700 Durbin-Watson: 2.595
Prob(Omnibus): 0.157 Jarque-Bera (JB): 1.623
Skew: 0.275 Prob(JB): 0.444
Kurtosis: 1.821 Cond. No. 53.7

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.061 0.323 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.694
Model: OLS Adj. R-squared: 0.610
Method: Least Squares F-statistic: 8.305
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00362
Time: 04:47:32 Log-Likelihood: -66.426
No. Observations: 15 AIC: 140.9
Df Residuals: 11 BIC: 143.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 198.2105 136.719 1.450 0.175 -102.706 499.127
C(dose)[T.1] -471.4390 195.079 -2.417 0.034 -900.805 -42.073
expression -21.1883 22.103 -0.959 0.358 -69.836 27.459
expression:C(dose)[T.1] 85.0579 31.723 2.681 0.021 15.235 154.880
Omnibus: 4.243 Durbin-Watson: 0.988
Prob(Omnibus): 0.120 Jarque-Bera (JB): 1.815
Skew: 0.747 Prob(JB): 0.404
Kurtosis: 3.819 Cond. No. 266.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.494
Model: OLS Adj. R-squared: 0.409
Method: Least Squares F-statistic: 5.847
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0169
Time: 04:47:32 Log-Likelihood: -70.198
No. Observations: 15 AIC: 146.4
Df Residuals: 12 BIC: 148.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -56.6474 120.987 -0.468 0.648 -320.256 206.961
C(dose)[T.1] 50.5728 15.146 3.339 0.006 17.572 83.573
expression 20.1018 19.520 1.030 0.323 -22.429 62.632
Omnibus: 2.612 Durbin-Watson: 0.739
Prob(Omnibus): 0.271 Jarque-Bera (JB): 1.836
Skew: -0.830 Prob(JB): 0.399
Kurtosis: 2.573 Cond. No. 102.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:47:32 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.023
Model: OLS Adj. R-squared: -0.052
Method: Least Squares F-statistic: 0.3059
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.590
Time: 04:47:32 Log-Likelihood: -75.126
No. Observations: 15 AIC: 154.3
Df Residuals: 13 BIC: 155.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 5.6130 159.519 0.035 0.972 -339.006 350.232
expression 14.3507 25.946 0.553 0.590 -41.703 70.404
Omnibus: 0.159 Durbin-Watson: 1.768
Prob(Omnibus): 0.924 Jarque-Bera (JB): 0.302
Skew: -0.193 Prob(JB): 0.860
Kurtosis: 2.422 Cond. No. 100.