AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.557 0.464 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.674
Model: OLS Adj. R-squared: 0.623
Method: Least Squares F-statistic: 13.10
Date: Thu, 21 Nov 2024 Prob (F-statistic): 7.17e-05
Time: 05:15:10 Log-Likelihood: -100.21
No. Observations: 23 AIC: 208.4
Df Residuals: 19 BIC: 213.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 112.7034 49.394 2.282 0.034 9.321 216.086
C(dose)[T.1] -15.0112 70.558 -0.213 0.834 -162.691 132.669
expression -18.1590 15.220 -1.193 0.248 -50.015 13.697
expression:C(dose)[T.1] 21.4202 22.483 0.953 0.353 -25.636 68.477
Omnibus: 0.434 Durbin-Watson: 1.728
Prob(Omnibus): 0.805 Jarque-Bera (JB): 0.544
Skew: -0.020 Prob(JB): 0.762
Kurtosis: 2.248 Cond. No. 71.9

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.659
Model: OLS Adj. R-squared: 0.624
Method: Least Squares F-statistic: 19.29
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.15e-05
Time: 05:15:10 Log-Likelihood: -100.75
No. Observations: 23 AIC: 207.5
Df Residuals: 20 BIC: 210.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 81.0803 36.495 2.222 0.038 4.953 157.208
C(dose)[T.1] 51.6697 8.934 5.783 0.000 33.034 70.306
expression -8.3420 11.176 -0.746 0.464 -31.655 14.971
Omnibus: 0.093 Durbin-Watson: 1.882
Prob(Omnibus): 0.954 Jarque-Bera (JB): 0.316
Skew: -0.039 Prob(JB): 0.854
Kurtosis: 2.431 Cond. No. 29.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:15:11 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.088
Model: OLS Adj. R-squared: 0.044
Method: Least Squares F-statistic: 2.015
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.170
Time: 05:15:11 Log-Likelihood: -112.05
No. Observations: 23 AIC: 228.1
Df Residuals: 21 BIC: 230.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 156.3115 54.399 2.873 0.009 43.182 269.441
expression -24.5049 17.264 -1.419 0.170 -60.407 11.397
Omnibus: 2.017 Durbin-Watson: 2.328
Prob(Omnibus): 0.365 Jarque-Bera (JB): 1.481
Skew: 0.423 Prob(JB): 0.477
Kurtosis: 2.090 Cond. No. 27.3

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.627 0.081 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.585
Model: OLS Adj. R-squared: 0.472
Method: Least Squares F-statistic: 5.165
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0181
Time: 05:15:11 Log-Likelihood: -68.707
No. Observations: 15 AIC: 145.4
Df Residuals: 11 BIC: 148.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 137.6360 41.241 3.337 0.007 46.866 228.406
C(dose)[T.1] 14.6372 65.524 0.223 0.827 -129.580 158.854
expression -16.7831 9.539 -1.759 0.106 -37.778 4.212
expression:C(dose)[T.1] 7.4871 16.150 0.464 0.652 -28.059 43.033
Omnibus: 3.728 Durbin-Watson: 1.348
Prob(Omnibus): 0.155 Jarque-Bera (JB): 1.913
Skew: -0.865 Prob(JB): 0.384
Kurtosis: 3.262 Cond. No. 49.6

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.577
Model: OLS Adj. R-squared: 0.506
Method: Least Squares F-statistic: 8.175
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00575
Time: 05:15:11 Log-Likelihood: -68.852
No. Observations: 15 AIC: 143.7
Df Residuals: 12 BIC: 145.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 126.7101 32.717 3.873 0.002 55.425 197.995
C(dose)[T.1] 44.2585 14.034 3.154 0.008 13.680 74.837
expression -14.1713 7.441 -1.904 0.081 -30.384 2.042
Omnibus: 3.534 Durbin-Watson: 1.221
Prob(Omnibus): 0.171 Jarque-Bera (JB): 1.786
Skew: -0.836 Prob(JB): 0.409
Kurtosis: 3.248 Cond. No. 21.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:15:11 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.226
Model: OLS Adj. R-squared: 0.166
Method: Least Squares F-statistic: 3.794
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0734
Time: 05:15:11 Log-Likelihood: -73.380
No. Observations: 15 AIC: 150.8
Df Residuals: 13 BIC: 152.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 167.6452 39.020 4.296 0.001 83.348 251.942
expression -18.5067 9.502 -1.948 0.073 -39.034 2.020
Omnibus: 3.470 Durbin-Watson: 1.900
Prob(Omnibus): 0.176 Jarque-Bera (JB): 1.604
Skew: 0.469 Prob(JB): 0.448
Kurtosis: 1.702 Cond. No. 18.9