AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.306 | 0.586 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.660 |
Model: | OLS | Adj. R-squared: | 0.607 |
Method: | Least Squares | F-statistic: | 12.31 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000105 |
Time: | 05:10:29 | Log-Likelihood: | -100.69 |
No. Observations: | 23 | AIC: | 209.4 |
Df Residuals: | 19 | BIC: | 213.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 183.9724 | 164.478 | 1.119 | 0.277 | -160.283 528.228 |
C(dose)[T.1] | -66.3308 | 202.738 | -0.327 | 0.747 | -490.665 358.004 |
expression | -21.7198 | 27.511 | -0.789 | 0.440 | -79.301 35.862 |
expression:C(dose)[T.1] | 19.9458 | 34.488 | 0.578 | 0.570 | -52.238 92.129 |
Omnibus: | 0.388 | Durbin-Watson: | 2.026 |
Prob(Omnibus): | 0.824 | Jarque-Bera (JB): | 0.521 |
Skew: | -0.049 | Prob(JB): | 0.771 |
Kurtosis: | 2.269 | Cond. No. | 380. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.654 |
Model: | OLS | Adj. R-squared: | 0.620 |
Method: | Least Squares | F-statistic: | 18.93 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.43e-05 |
Time: | 05:10:29 | Log-Likelihood: | -100.89 |
No. Observations: | 23 | AIC: | 207.8 |
Df Residuals: | 20 | BIC: | 211.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 108.1430 | 97.641 | 1.108 | 0.281 | -95.533 311.818 |
C(dose)[T.1] | 50.7781 | 9.855 | 5.152 | 0.000 | 30.220 71.336 |
expression | -9.0275 | 16.312 | -0.553 | 0.586 | -43.054 24.999 |
Omnibus: | 0.214 | Durbin-Watson: | 1.905 |
Prob(Omnibus): | 0.898 | Jarque-Bera (JB): | 0.416 |
Skew: | 0.004 | Prob(JB): | 0.812 |
Kurtosis: | 2.341 | Cond. No. | 136. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:10:29 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.196 |
Model: | OLS | Adj. R-squared: | 0.157 |
Method: | Least Squares | F-statistic: | 5.105 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0346 |
Time: | 05:10:30 | Log-Likelihood: | -110.60 |
No. Observations: | 23 | AIC: | 225.2 |
Df Residuals: | 21 | BIC: | 227.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 362.6607 | 125.389 | 2.892 | 0.009 | 101.900 623.422 |
expression | -48.4585 | 21.446 | -2.260 | 0.035 | -93.058 -3.859 |
Omnibus: | 2.136 | Durbin-Watson: | 1.996 |
Prob(Omnibus): | 0.344 | Jarque-Bera (JB): | 1.378 |
Skew: | 0.341 | Prob(JB): | 0.502 |
Kurtosis: | 2.013 | Cond. No. | 117. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.916 | 0.192 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.601 |
Model: | OLS | Adj. R-squared: | 0.492 |
Method: | Least Squares | F-statistic: | 5.520 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0147 |
Time: | 05:10:30 | Log-Likelihood: | -68.411 |
No. Observations: | 15 | AIC: | 144.8 |
Df Residuals: | 11 | BIC: | 147.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -37.1090 | 240.401 | -0.154 | 0.880 | -566.228 492.010 |
C(dose)[T.1] | 467.5507 | 287.205 | 1.628 | 0.132 | -164.583 1099.684 |
expression | 18.4464 | 42.382 | 0.435 | 0.672 | -74.836 111.729 |
expression:C(dose)[T.1] | -73.0731 | 50.416 | -1.449 | 0.175 | -184.037 37.891 |
Omnibus: | 1.309 | Durbin-Watson: | 1.164 |
Prob(Omnibus): | 0.520 | Jarque-Bera (JB): | 1.011 |
Skew: | -0.577 | Prob(JB): | 0.603 |
Kurtosis: | 2.464 | Cond. No. | 354. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.525 |
Model: | OLS | Adj. R-squared: | 0.445 |
Method: | Least Squares | F-statistic: | 6.623 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0115 |
Time: | 05:10:30 | Log-Likelihood: | -69.722 |
No. Observations: | 15 | AIC: | 145.4 |
Df Residuals: | 12 | BIC: | 147.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 255.5449 | 136.330 | 1.874 | 0.085 | -41.494 552.583 |
C(dose)[T.1] | 51.7737 | 14.734 | 3.514 | 0.004 | 19.671 83.877 |
expression | -33.1944 | 23.983 | -1.384 | 0.192 | -85.448 19.059 |
Omnibus: | 2.926 | Durbin-Watson: | 0.720 |
Prob(Omnibus): | 0.231 | Jarque-Bera (JB): | 1.317 |
Skew: | -0.338 | Prob(JB): | 0.518 |
Kurtosis: | 1.715 | Cond. No. | 111. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:10:30 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.036 |
Model: | OLS | Adj. R-squared: | -0.039 |
Method: | Least Squares | F-statistic: | 0.4795 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.501 |
Time: | 05:10:30 | Log-Likelihood: | -75.028 |
No. Observations: | 15 | AIC: | 154.1 |
Df Residuals: | 13 | BIC: | 155.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 222.3631 | 186.123 | 1.195 | 0.254 | -179.731 624.457 |
expression | -22.5447 | 32.558 | -0.692 | 0.501 | -92.881 47.792 |
Omnibus: | 0.323 | Durbin-Watson: | 1.553 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.462 |
Skew: | -0.005 | Prob(JB): | 0.794 |
Kurtosis: | 2.140 | Cond. No. | 110. |