AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.209 0.652 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.653
Model: OLS Adj. R-squared: 0.598
Method: Least Squares F-statistic: 11.90
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000129
Time: 03:42:29 Log-Likelihood: -100.94
No. Observations: 23 AIC: 209.9
Df Residuals: 19 BIC: 214.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 44.3673 25.291 1.754 0.095 -8.566 97.301
C(dose)[T.1] 51.5259 63.681 0.809 0.428 -81.761 184.813
expression 2.1458 5.347 0.401 0.693 -9.045 13.336
expression:C(dose)[T.1] 0.7980 15.618 0.051 0.960 -31.891 33.487
Omnibus: 0.525 Durbin-Watson: 1.863
Prob(Omnibus): 0.769 Jarque-Bera (JB): 0.599
Skew: 0.101 Prob(JB): 0.741
Kurtosis: 2.235 Cond. No. 73.1

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.653
Model: OLS Adj. R-squared: 0.618
Method: Least Squares F-statistic: 18.79
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.55e-05
Time: 03:42:29 Log-Likelihood: -100.94
No. Observations: 23 AIC: 207.9
Df Residuals: 20 BIC: 211.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 43.9383 23.254 1.889 0.073 -4.569 92.446
C(dose)[T.1] 54.7434 9.250 5.918 0.000 35.447 74.040
expression 2.2393 4.897 0.457 0.652 -7.975 12.454
Omnibus: 0.484 Durbin-Watson: 1.866
Prob(Omnibus): 0.785 Jarque-Bera (JB): 0.577
Skew: 0.090 Prob(JB): 0.750
Kurtosis: 2.246 Cond. No. 25.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:42:29 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.045
Model: OLS Adj. R-squared: -0.001
Method: Least Squares F-statistic: 0.9784
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.334
Time: 03:42:29 Log-Likelihood: -112.58
No. Observations: 23 AIC: 229.2
Df Residuals: 21 BIC: 231.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 111.4086 32.806 3.396 0.003 43.184 179.633
expression -7.3942 7.475 -0.989 0.334 -22.940 8.152
Omnibus: 1.899 Durbin-Watson: 2.492
Prob(Omnibus): 0.387 Jarque-Bera (JB): 1.074
Skew: 0.121 Prob(JB): 0.585
Kurtosis: 1.969 Cond. No. 21.4

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.001 0.975 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.299
Method: Least Squares F-statistic: 2.988
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0776
Time: 03:42:29 Log-Likelihood: -70.830
No. Observations: 15 AIC: 149.7
Df Residuals: 11 BIC: 152.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 66.5722 51.370 1.296 0.222 -46.493 179.637
C(dose)[T.1] 39.4075 171.403 0.230 0.822 -337.848 416.663
expression 0.1921 11.205 0.017 0.987 -24.469 24.853
expression:C(dose)[T.1] 3.0181 50.457 0.060 0.953 -108.036 114.072
Omnibus: 2.486 Durbin-Watson: 0.814
Prob(Omnibus): 0.288 Jarque-Bera (JB): 1.759
Skew: -0.809 Prob(JB): 0.415
Kurtosis: 2.556 Cond. No. 97.2

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.357
Method: Least Squares F-statistic: 4.886
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0280
Time: 03:42:29 Log-Likelihood: -70.832
No. Observations: 15 AIC: 147.7
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 65.9088 48.031 1.372 0.195 -38.741 170.559
C(dose)[T.1] 49.5857 19.759 2.510 0.027 6.536 92.636
expression 0.3409 10.461 0.033 0.975 -22.452 23.134
Omnibus: 2.683 Durbin-Watson: 0.815
Prob(Omnibus): 0.262 Jarque-Bera (JB): 1.849
Skew: -0.838 Prob(JB): 0.397
Kurtosis: 2.615 Cond. No. 26.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:42:29 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.160
Model: OLS Adj. R-squared: 0.095
Method: Least Squares F-statistic: 2.468
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.140
Time: 03:42:29 Log-Likelihood: -73.996
No. Observations: 15 AIC: 152.0
Df Residuals: 13 BIC: 153.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 153.4430 39.175 3.917 0.002 68.810 238.076
expression -15.5309 9.886 -1.571 0.140 -36.889 5.827
Omnibus: 1.898 Durbin-Watson: 1.264
Prob(Omnibus): 0.387 Jarque-Bera (JB): 1.003
Skew: -0.221 Prob(JB): 0.606
Kurtosis: 1.813 Cond. No. 17.7