AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.107 0.305 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.705
Model: OLS Adj. R-squared: 0.659
Method: Least Squares F-statistic: 15.16
Date: Tue, 03 Dec 2024 Prob (F-statistic): 2.81e-05
Time: 11:45:37 Log-Likelihood: -99.050
No. Observations: 23 AIC: 206.1
Df Residuals: 19 BIC: 210.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 23.2814 66.271 0.351 0.729 -115.425 161.988
C(dose)[T.1] 184.3458 85.797 2.149 0.045 4.770 363.922
expression 5.8353 12.458 0.468 0.645 -20.239 31.910
expression:C(dose)[T.1] -25.7885 16.487 -1.564 0.134 -60.296 8.719
Omnibus: 0.696 Durbin-Watson: 1.670
Prob(Omnibus): 0.706 Jarque-Bera (JB): 0.673
Skew: 0.356 Prob(JB): 0.714
Kurtosis: 2.559 Cond. No. 150.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.667
Model: OLS Adj. R-squared: 0.634
Method: Least Squares F-statistic: 20.07
Date: Tue, 03 Dec 2024 Prob (F-statistic): 1.65e-05
Time: 11:45:37 Log-Likelihood: -100.44
No. Observations: 23 AIC: 206.9
Df Residuals: 20 BIC: 210.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 101.3196 45.171 2.243 0.036 7.094 195.545
C(dose)[T.1] 50.8115 8.868 5.730 0.000 32.313 69.310
expression -8.8890 8.450 -1.052 0.305 -26.515 8.737
Omnibus: 0.362 Durbin-Watson: 1.848
Prob(Omnibus): 0.834 Jarque-Bera (JB): 0.505
Skew: 0.220 Prob(JB): 0.777
Kurtosis: 2.422 Cond. No. 57.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 03 Dec 2024 Prob (F-statistic): 3.51e-06
Time: 11:45:37 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.122
Model: OLS Adj. R-squared: 0.080
Method: Least Squares F-statistic: 2.907
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.103
Time: 11:45:37 Log-Likelihood: -111.61
No. Observations: 23 AIC: 227.2
Df Residuals: 21 BIC: 229.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 193.3090 66.968 2.887 0.009 54.041 332.577
expression -21.9965 12.902 -1.705 0.103 -48.827 4.834
Omnibus: 1.272 Durbin-Watson: 2.332
Prob(Omnibus): 0.530 Jarque-Bera (JB): 0.877
Skew: 0.076 Prob(JB): 0.645
Kurtosis: 2.056 Cond. No. 53.3

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.259 0.620 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.475
Model: OLS Adj. R-squared: 0.331
Method: Least Squares F-statistic: 3.314
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0609
Time: 11:45:37 Log-Likelihood: -70.472
No. Observations: 15 AIC: 148.9
Df Residuals: 11 BIC: 151.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 75.6484 136.532 0.554 0.591 -224.857 376.154
C(dose)[T.1] 173.5974 226.657 0.766 0.460 -325.271 672.466
expression -1.3763 22.776 -0.060 0.953 -51.506 48.753
expression:C(dose)[T.1] -20.4998 37.498 -0.547 0.596 -103.032 62.032
Omnibus: 2.104 Durbin-Watson: 0.841
Prob(Omnibus): 0.349 Jarque-Bera (JB): 1.598
Skew: -0.738 Prob(JB): 0.450
Kurtosis: 2.387 Cond. No. 221.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.460
Model: OLS Adj. R-squared: 0.371
Method: Least Squares F-statistic: 5.120
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0247
Time: 11:45:37 Log-Likelihood: -70.673
No. Observations: 15 AIC: 147.3
Df Residuals: 12 BIC: 149.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 120.8175 105.472 1.145 0.274 -108.986 350.621
C(dose)[T.1] 49.9997 15.652 3.194 0.008 15.897 84.103
expression -8.9391 17.557 -0.509 0.620 -47.192 29.314
Omnibus: 2.480 Durbin-Watson: 0.972
Prob(Omnibus): 0.289 Jarque-Bera (JB): 1.814
Skew: -0.811 Prob(JB): 0.404
Kurtosis: 2.476 Cond. No. 84.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.00629
Time: 11:45:37 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.002
Model: OLS Adj. R-squared: -0.075
Method: Least Squares F-statistic: 0.02072
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.888
Time: 11:45:37 Log-Likelihood: -75.288
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 113.4507 137.811 0.823 0.425 -184.271 411.172
expression -3.2861 22.828 -0.144 0.888 -52.604 46.031
Omnibus: 0.644 Durbin-Watson: 1.686
Prob(Omnibus): 0.725 Jarque-Bera (JB): 0.595
Skew: 0.041 Prob(JB): 0.743
Kurtosis: 2.027 Cond. No. 84.2