AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.589 0.452 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.700
Model: OLS Adj. R-squared: 0.653
Method: Least Squares F-statistic: 14.78
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.32e-05
Time: 05:01:43 Log-Likelihood: -99.256
No. Observations: 23 AIC: 206.5
Df Residuals: 19 BIC: 211.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 174.4338 115.284 1.513 0.147 -66.859 415.727
C(dose)[T.1] -166.3472 133.962 -1.242 0.229 -446.733 114.039
expression -29.4326 28.188 -1.044 0.310 -88.430 29.565
expression:C(dose)[T.1] 51.5190 31.974 1.611 0.124 -15.404 118.441
Omnibus: 2.995 Durbin-Watson: 1.731
Prob(Omnibus): 0.224 Jarque-Bera (JB): 1.281
Skew: -0.029 Prob(JB): 0.527
Kurtosis: 1.845 Cond. No. 216.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.659
Model: OLS Adj. R-squared: 0.625
Method: Least Squares F-statistic: 19.33
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.12e-05
Time: 05:01:43 Log-Likelihood: -100.73
No. Observations: 23 AIC: 207.5
Df Residuals: 20 BIC: 210.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 10.8800 56.793 0.192 0.850 -107.588 129.348
C(dose)[T.1] 48.8992 10.401 4.702 0.000 27.204 70.595
expression 10.6073 13.826 0.767 0.452 -18.234 39.448
Omnibus: 0.312 Durbin-Watson: 1.863
Prob(Omnibus): 0.855 Jarque-Bera (JB): 0.468
Skew: 0.202 Prob(JB): 0.791
Kurtosis: 2.429 Cond. No. 60.4

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:01:43 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.282
Model: OLS Adj. R-squared: 0.248
Method: Least Squares F-statistic: 8.260
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00908
Time: 05:01:43 Log-Likelihood: -109.29
No. Observations: 23 AIC: 222.6
Df Residuals: 21 BIC: 224.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -120.6520 69.983 -1.724 0.099 -266.189 24.885
expression 46.7620 16.270 2.874 0.009 12.926 80.597
Omnibus: 1.881 Durbin-Watson: 2.052
Prob(Omnibus): 0.390 Jarque-Bera (JB): 1.499
Skew: 0.463 Prob(JB): 0.473
Kurtosis: 2.159 Cond. No. 51.9

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.872 0.369 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.610
Model: OLS Adj. R-squared: 0.504
Method: Least Squares F-statistic: 5.733
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0130
Time: 05:01:43 Log-Likelihood: -68.240
No. Observations: 15 AIC: 144.5
Df Residuals: 11 BIC: 147.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 53.2024 63.907 0.832 0.423 -87.456 193.860
C(dose)[T.1] 256.8004 111.786 2.297 0.042 10.761 502.839
expression 3.8913 17.261 0.225 0.826 -34.099 41.882
expression:C(dose)[T.1] -56.4541 30.213 -1.869 0.089 -122.953 10.045
Omnibus: 0.478 Durbin-Watson: 0.929
Prob(Omnibus): 0.787 Jarque-Bera (JB): 0.314
Skew: -0.313 Prob(JB): 0.855
Kurtosis: 2.666 Cond. No. 79.4

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.486
Model: OLS Adj. R-squared: 0.400
Method: Least Squares F-statistic: 5.675
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0184
Time: 05:01:43 Log-Likelihood: -70.307
No. Observations: 15 AIC: 146.6
Df Residuals: 12 BIC: 148.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 120.5644 57.987 2.079 0.060 -5.778 246.907
C(dose)[T.1] 49.5320 15.202 3.258 0.007 16.410 82.654
expression -14.5343 15.568 -0.934 0.369 -48.454 19.385
Omnibus: 1.569 Durbin-Watson: 0.946
Prob(Omnibus): 0.456 Jarque-Bera (JB): 1.255
Skew: -0.621 Prob(JB): 0.534
Kurtosis: 2.319 Cond. No. 30.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:01:43 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.031
Model: OLS Adj. R-squared: -0.043
Method: Least Squares F-statistic: 0.4220
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.527
Time: 05:01:43 Log-Likelihood: -75.060
No. Observations: 15 AIC: 154.1
Df Residuals: 13 BIC: 155.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 142.5817 75.963 1.877 0.083 -21.527 306.691
expression -13.3348 20.528 -0.650 0.527 -57.684 31.014
Omnibus: 0.982 Durbin-Watson: 1.806
Prob(Omnibus): 0.612 Jarque-Bera (JB): 0.706
Skew: -0.057 Prob(JB): 0.703
Kurtosis: 1.943 Cond. No. 30.1