AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.000 | 0.988 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.675 |
Model: | OLS | Adj. R-squared: | 0.624 |
Method: | Least Squares | F-statistic: | 13.15 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 7.01e-05 |
Time: | 05:14:05 | Log-Likelihood: | -100.18 |
No. Observations: | 23 | AIC: | 208.4 |
Df Residuals: | 19 | BIC: | 212.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 37.1472 | 35.239 | 1.054 | 0.305 | -36.609 110.904 |
C(dose)[T.1] | 150.6908 | 79.681 | 1.891 | 0.074 | -16.084 317.465 |
expression | 5.5420 | 11.280 | 0.491 | 0.629 | -18.068 29.152 |
expression:C(dose)[T.1] | -33.7646 | 27.448 | -1.230 | 0.234 | -91.215 23.686 |
Omnibus: | 0.330 | Durbin-Watson: | 1.720 |
Prob(Omnibus): | 0.848 | Jarque-Bera (JB): | 0.494 |
Skew: | 0.114 | Prob(JB): | 0.781 |
Kurtosis: | 2.319 | Cond. No. | 70.0 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.49 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.83e-05 |
Time: | 05:14:05 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.7025 | 32.631 | 1.676 | 0.109 | -13.364 122.769 |
C(dose)[T.1] | 53.2996 | 9.101 | 5.857 | 0.000 | 34.316 72.284 |
expression | -0.1605 | 10.415 | -0.015 | 0.988 | -21.885 21.564 |
Omnibus: | 0.322 | Durbin-Watson: | 1.885 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.062 | Prob(JB): | 0.784 |
Kurtosis: | 2.299 | Cond. No. | 25.1 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:14:05 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.047 |
Model: | OLS | Adj. R-squared: | 0.002 |
Method: | Least Squares | F-statistic: | 1.041 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.319 |
Time: | 05:14:05 | Log-Likelihood: | -112.55 |
No. Observations: | 23 | AIC: | 229.1 |
Df Residuals: | 21 | BIC: | 231.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 128.5576 | 48.394 | 2.656 | 0.015 | 27.917 229.198 |
expression | -16.4621 | 16.138 | -1.020 | 0.319 | -50.023 17.098 |
Omnibus: | 3.344 | Durbin-Watson: | 2.408 |
Prob(Omnibus): | 0.188 | Jarque-Bera (JB): | 1.423 |
Skew: | 0.167 | Prob(JB): | 0.491 |
Kurtosis: | 1.828 | Cond. No. | 22.8 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.000 | 0.997 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.298 |
Method: | Least Squares | F-statistic: | 2.986 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0777 |
Time: | 05:14:05 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 149.7 |
Df Residuals: | 11 | BIC: | 152.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 66.4245 | 77.981 | 0.852 | 0.412 | -105.210 238.059 |
C(dose)[T.1] | 52.6303 | 131.435 | 0.400 | 0.697 | -236.655 341.916 |
expression | 0.3159 | 24.239 | 0.013 | 0.990 | -53.035 53.667 |
expression:C(dose)[T.1] | -1.0727 | 40.759 | -0.026 | 0.979 | -90.782 88.637 |
Omnibus: | 2.786 | Durbin-Watson: | 0.805 |
Prob(Omnibus): | 0.248 | Jarque-Bera (JB): | 1.897 |
Skew: | -0.853 | Prob(JB): | 0.387 |
Kurtosis: | 2.645 | Cond. No. | 70.6 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.357 |
Method: | Least Squares | F-statistic: | 4.885 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0281 |
Time: | 05:14:05 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.6304 | 60.413 | 1.119 | 0.285 | -63.998 199.259 |
C(dose)[T.1] | 49.1985 | 15.751 | 3.124 | 0.009 | 14.880 83.517 |
expression | -0.0635 | 18.658 | -0.003 | 0.997 | -40.716 40.589 |
Omnibus: | 2.720 | Durbin-Watson: | 0.811 |
Prob(Omnibus): | 0.257 | Jarque-Bera (JB): | 1.871 |
Skew: | -0.844 | Prob(JB): | 0.392 |
Kurtosis: | 2.622 | Cond. No. | 27.5 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:14:05 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.001 |
Model: | OLS | Adj. R-squared: | -0.076 |
Method: | Least Squares | F-statistic: | 0.007846 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.931 |
Time: | 05:14:05 | Log-Likelihood: | -75.296 |
No. Observations: | 15 | AIC: | 154.6 |
Df Residuals: | 13 | BIC: | 156.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 86.8390 | 77.748 | 1.117 | 0.284 | -81.126 254.804 |
expression | 2.1365 | 24.120 | 0.089 | 0.931 | -49.972 54.245 |
Omnibus: | 0.595 | Durbin-Watson: | 1.606 |
Prob(Omnibus): | 0.743 | Jarque-Bera (JB): | 0.579 |
Skew: | 0.057 | Prob(JB): | 0.749 |
Kurtosis: | 2.044 | Cond. No. | 27.0 |