AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.235 0.633 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.711
Model: OLS Adj. R-squared: 0.666
Method: Least Squares F-statistic: 15.61
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.32e-05
Time: 22:44:34 Log-Likelihood: -98.817
No. Observations: 23 AIC: 205.6
Df Residuals: 19 BIC: 210.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 81.9609 34.989 2.342 0.030 8.728 155.194
C(dose)[T.1] -54.1816 55.696 -0.973 0.343 -170.754 62.391
expression -7.8085 9.716 -0.804 0.432 -28.144 12.527
expression:C(dose)[T.1] 30.7269 15.702 1.957 0.065 -2.137 63.591
Omnibus: 2.108 Durbin-Watson: 1.448
Prob(Omnibus): 0.349 Jarque-Bera (JB): 1.358
Skew: 0.333 Prob(JB): 0.507
Kurtosis: 2.013 Cond. No. 64.6

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.653
Model: OLS Adj. R-squared: 0.618
Method: Least Squares F-statistic: 18.83
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.52e-05
Time: 22:44:35 Log-Likelihood: -100.93
No. Observations: 23 AIC: 207.9
Df Residuals: 20 BIC: 211.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 40.1476 29.603 1.356 0.190 -21.602 101.898
C(dose)[T.1] 53.6286 8.739 6.136 0.000 35.399 71.859
expression 3.9562 8.154 0.485 0.633 -13.054 20.966
Omnibus: 0.307 Durbin-Watson: 2.009
Prob(Omnibus): 0.858 Jarque-Bera (JB): 0.479
Skew: 0.135 Prob(JB): 0.787
Kurtosis: 2.346 Cond. No. 26.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:44:35 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.048
Method: Least Squares F-statistic: 0.001467
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.970
Time: 22:44:35 Log-Likelihood: -113.10
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 77.9009 47.979 1.624 0.119 -21.878 177.679
expression 0.5162 13.480 0.038 0.970 -27.516 28.549
Omnibus: 3.295 Durbin-Watson: 2.493
Prob(Omnibus): 0.193 Jarque-Bera (JB): 1.557
Skew: 0.282 Prob(JB): 0.459
Kurtosis: 1.857 Cond. No. 25.5

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.167 0.690 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.603
Model: OLS Adj. R-squared: 0.495
Method: Least Squares F-statistic: 5.573
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0142
Time: 22:44:35 Log-Likelihood: -68.368
No. Observations: 15 AIC: 144.7
Df Residuals: 11 BIC: 147.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 155.2243 76.669 2.025 0.068 -13.522 323.971
C(dose)[T.1] -153.9787 102.414 -1.503 0.161 -379.390 71.433
expression -18.4334 15.954 -1.155 0.272 -53.549 16.682
expression:C(dose)[T.1] 44.2030 21.909 2.018 0.069 -4.018 92.424
Omnibus: 2.496 Durbin-Watson: 1.006
Prob(Omnibus): 0.287 Jarque-Bera (JB): 0.737
Skew: -0.435 Prob(JB): 0.692
Kurtosis: 3.650 Cond. No. 96.5

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.456
Model: OLS Adj. R-squared: 0.366
Method: Least Squares F-statistic: 5.036
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0258
Time: 22:44:35 Log-Likelihood: -70.729
No. Observations: 15 AIC: 147.5
Df Residuals: 12 BIC: 149.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 43.5799 59.469 0.733 0.478 -85.992 173.152
C(dose)[T.1] 50.6261 16.018 3.161 0.008 15.726 85.526
expression 5.0072 12.254 0.409 0.690 -21.691 31.706
Omnibus: 3.152 Durbin-Watson: 0.934
Prob(Omnibus): 0.207 Jarque-Bera (JB): 1.970
Skew: -0.884 Prob(JB): 0.373
Kurtosis: 2.834 Cond. No. 37.4

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:44:35 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.004
Model: OLS Adj. R-squared: -0.073
Method: Least Squares F-statistic: 0.04928
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.828
Time: 22:44:36 Log-Likelihood: -75.272
No. Observations: 15 AIC: 154.5
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 109.5838 72.418 1.513 0.154 -46.865 266.032
expression -3.4523 15.552 -0.222 0.828 -37.050 30.146
Omnibus: 1.123 Durbin-Watson: 1.569
Prob(Omnibus): 0.570 Jarque-Bera (JB): 0.766
Skew: 0.136 Prob(JB): 0.682
Kurtosis: 1.926 Cond. No. 34.8