AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.012 | 0.914 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.670 |
Model: | OLS | Adj. R-squared: | 0.618 |
Method: | Least Squares | F-statistic: | 12.86 |
Date: | Mon, 27 Jan 2025 | Prob (F-statistic): | 8.07e-05 |
Time: | 22:25:13 | Log-Likelihood: | -100.36 |
No. Observations: | 23 | AIC: | 208.7 |
Df Residuals: | 19 | BIC: | 213.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 164.9539 | 151.340 | 1.090 | 0.289 | -151.804 481.712 |
C(dose)[T.1] | -230.9831 | 260.948 | -0.885 | 0.387 | -777.153 315.187 |
expression | -13.8037 | 18.848 | -0.732 | 0.473 | -53.254 25.647 |
expression:C(dose)[T.1] | 34.9167 | 31.989 | 1.092 | 0.289 | -32.037 101.870 |
Omnibus: | 0.103 | Durbin-Watson: | 1.768 |
Prob(Omnibus): | 0.950 | Jarque-Bera (JB): | 0.318 |
Skew: | 0.077 | Prob(JB): | 0.853 |
Kurtosis: | 2.445 | Cond. No. | 601. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.51 |
Date: | Mon, 27 Jan 2025 | Prob (F-statistic): | 2.82e-05 |
Time: | 22:25:13 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.6968 | 122.914 | 0.551 | 0.588 | -188.697 324.091 |
C(dose)[T.1] | 53.6705 | 9.278 | 5.785 | 0.000 | 34.318 73.023 |
expression | -1.6812 | 15.302 | -0.110 | 0.914 | -33.600 30.238 |
Omnibus: | 0.284 | Durbin-Watson: | 1.903 |
Prob(Omnibus): | 0.868 | Jarque-Bera (JB): | 0.462 |
Skew: | 0.056 | Prob(JB): | 0.794 |
Kurtosis: | 2.315 | Cond. No. | 232. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Mon, 27 Jan 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:25:13 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.062 |
Model: | OLS | Adj. R-squared: | 0.018 |
Method: | Least Squares | F-statistic: | 1.397 |
Date: | Mon, 27 Jan 2025 | Prob (F-statistic): | 0.250 |
Time: | 22:25:13 | Log-Likelihood: | -112.36 |
No. Observations: | 23 | AIC: | 228.7 |
Df Residuals: | 21 | BIC: | 231.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -141.6740 | 187.430 | -0.756 | 0.458 | -531.456 248.108 |
expression | 27.2725 | 23.073 | 1.182 | 0.250 | -20.710 75.255 |
Omnibus: | 1.332 | Durbin-Watson: | 2.401 |
Prob(Omnibus): | 0.514 | Jarque-Bera (JB): | 0.893 |
Skew: | 0.067 | Prob(JB): | 0.640 |
Kurtosis: | 2.044 | Cond. No. | 221. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
4.909 | 0.047 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.609 |
Model: | OLS | Adj. R-squared: | 0.503 |
Method: | Least Squares | F-statistic: | 5.718 |
Date: | Mon, 27 Jan 2025 | Prob (F-statistic): | 0.0131 |
Time: | 22:25:13 | Log-Likelihood: | -68.252 |
No. Observations: | 15 | AIC: | 144.5 |
Df Residuals: | 11 | BIC: | 147.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 480.7744 | 458.765 | 1.048 | 0.317 | -528.960 1490.509 |
C(dose)[T.1] | -30.3581 | 490.522 | -0.062 | 0.952 | -1109.989 1049.273 |
expression | -58.4396 | 64.845 | -0.901 | 0.387 | -201.163 84.284 |
expression:C(dose)[T.1] | 8.0709 | 69.924 | 0.115 | 0.910 | -145.830 161.972 |
Omnibus: | 2.180 | Durbin-Watson: | 1.573 |
Prob(Omnibus): | 0.336 | Jarque-Bera (JB): | 0.552 |
Skew: | 0.351 | Prob(JB): | 0.759 |
Kurtosis: | 3.624 | Cond. No. | 766. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.609 |
Model: | OLS | Adj. R-squared: | 0.544 |
Method: | Least Squares | F-statistic: | 9.338 |
Date: | Mon, 27 Jan 2025 | Prob (F-statistic): | 0.00358 |
Time: | 22:25:13 | Log-Likelihood: | -68.261 |
No. Observations: | 15 | AIC: | 142.5 |
Df Residuals: | 12 | BIC: | 144.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 431.6798 | 164.680 | 2.621 | 0.022 | 72.873 790.486 |
C(dose)[T.1] | 26.2235 | 16.832 | 1.558 | 0.145 | -10.450 62.897 |
expression | -51.4985 | 23.242 | -2.216 | 0.047 | -102.140 -0.858 |
Omnibus: | 2.421 | Durbin-Watson: | 1.590 |
Prob(Omnibus): | 0.298 | Jarque-Bera (JB): | 0.656 |
Skew: | 0.369 | Prob(JB): | 0.720 |
Kurtosis: | 3.712 | Cond. No. | 175. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Mon, 27 Jan 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:25:13 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.530 |
Model: | OLS | Adj. R-squared: | 0.494 |
Method: | Least Squares | F-statistic: | 14.64 |
Date: | Mon, 27 Jan 2025 | Prob (F-statistic): | 0.00210 |
Time: | 22:25:13 | Log-Likelihood: | -69.642 |
No. Observations: | 15 | AIC: | 143.3 |
Df Residuals: | 13 | BIC: | 144.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 598.1275 | 132.022 | 4.531 | 0.001 | 312.912 883.343 |
expression | -73.8041 | 19.288 | -3.826 | 0.002 | -115.474 -32.134 |
Omnibus: | 12.212 | Durbin-Watson: | 1.972 |
Prob(Omnibus): | 0.002 | Jarque-Bera (JB): | 9.878 |
Skew: | 1.170 | Prob(JB): | 0.00716 |
Kurtosis: | 6.214 | Cond. No. | 132. |