AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.246 0.625 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.679
Model: OLS Adj. R-squared: 0.629
Method: Least Squares F-statistic: 13.43
Date: Wed, 29 Jan 2025 Prob (F-statistic): 6.16e-05
Time: 01:07:17 Log-Likelihood: -100.02
No. Observations: 23 AIC: 208.0
Df Residuals: 19 BIC: 212.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 91.4385 49.073 1.863 0.078 -11.273 194.150
C(dose)[T.1] -12.5137 55.850 -0.224 0.825 -129.409 104.382
expression -8.1004 10.598 -0.764 0.454 -30.283 14.082
expression:C(dose)[T.1] 15.7796 12.678 1.245 0.228 -10.756 42.316
Omnibus: 1.034 Durbin-Watson: 2.068
Prob(Omnibus): 0.596 Jarque-Bera (JB): 0.931
Skew: 0.289 Prob(JB): 0.628
Kurtosis: 2.203 Cond. No. 82.0

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.653
Model: OLS Adj. R-squared: 0.619
Method: Least Squares F-statistic: 18.85
Date: Wed, 29 Jan 2025 Prob (F-statistic): 2.51e-05
Time: 01:07:17 Log-Likelihood: -100.92
No. Observations: 23 AIC: 207.8
Df Residuals: 20 BIC: 211.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 40.7576 27.760 1.468 0.158 -17.149 98.664
C(dose)[T.1] 55.8806 10.111 5.527 0.000 34.790 76.971
expression 2.9266 5.896 0.496 0.625 -9.372 15.225
Omnibus: 0.539 Durbin-Watson: 1.944
Prob(Omnibus): 0.764 Jarque-Bera (JB): 0.627
Skew: 0.175 Prob(JB): 0.731
Kurtosis: 2.271 Cond. No. 29.4

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Wed, 29 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 01:07:17 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.124
Model: OLS Adj. R-squared: 0.082
Method: Least Squares F-statistic: 2.969
Date: Wed, 29 Jan 2025 Prob (F-statistic): 0.0996
Time: 01:07:17 Log-Likelihood: -111.58
No. Observations: 23 AIC: 227.2
Df Residuals: 21 BIC: 229.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 136.5166 33.649 4.057 0.001 66.539 206.494
expression -13.5869 7.885 -1.723 0.100 -29.985 2.812
Omnibus: 1.602 Durbin-Watson: 2.299
Prob(Omnibus): 0.449 Jarque-Bera (JB): 1.417
Skew: 0.534 Prob(JB): 0.492
Kurtosis: 2.417 Cond. No. 22.4

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.912 0.358 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.490
Model: OLS Adj. R-squared: 0.350
Method: Least Squares F-statistic: 3.518
Date: Wed, 29 Jan 2025 Prob (F-statistic): 0.0525
Time: 01:07:17 Log-Likelihood: -70.255
No. Observations: 15 AIC: 148.5
Df Residuals: 11 BIC: 151.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 101.2805 59.275 1.709 0.116 -29.183 231.744
C(dose)[T.1] 70.0589 95.664 0.732 0.479 -140.496 280.614
expression -7.0723 12.146 -0.582 0.572 -33.806 19.661
expression:C(dose)[T.1] -3.9452 19.272 -0.205 0.842 -46.362 38.472
Omnibus: 0.735 Durbin-Watson: 0.956
Prob(Omnibus): 0.693 Jarque-Bera (JB): 0.451
Skew: -0.396 Prob(JB): 0.798
Kurtosis: 2.693 Cond. No. 79.4

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.488
Model: OLS Adj. R-squared: 0.402
Method: Least Squares F-statistic: 5.712
Date: Wed, 29 Jan 2025 Prob (F-statistic): 0.0181
Time: 01:07:17 Log-Likelihood: -70.284
No. Observations: 15 AIC: 146.6
Df Residuals: 12 BIC: 148.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 108.7816 44.694 2.434 0.032 11.402 206.162
C(dose)[T.1] 50.7481 15.260 3.326 0.006 17.499 83.997
expression -8.6394 9.046 -0.955 0.358 -28.349 11.070
Omnibus: 0.770 Durbin-Watson: 0.907
Prob(Omnibus): 0.681 Jarque-Bera (JB): 0.536
Skew: -0.423 Prob(JB): 0.765
Kurtosis: 2.624 Cond. No. 30.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Wed, 29 Jan 2025 Prob (F-statistic): 0.00629
Time: 01:07:17 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.016
Model: OLS Adj. R-squared: -0.060
Method: Least Squares F-statistic: 0.2060
Date: Wed, 29 Jan 2025 Prob (F-statistic): 0.657
Time: 01:07:17 Log-Likelihood: -75.182
No. Observations: 15 AIC: 154.4
Df Residuals: 13 BIC: 155.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 120.2109 59.349 2.026 0.064 -8.004 248.426
expression -5.4368 11.979 -0.454 0.657 -31.316 20.443
Omnibus: 1.384 Durbin-Watson: 1.534
Prob(Omnibus): 0.501 Jarque-Bera (JB): 0.852
Skew: 0.172 Prob(JB): 0.653
Kurtosis: 1.884 Cond. No. 30.3