AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.628 0.437 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.709
Model: OLS Adj. R-squared: 0.663
Method: Least Squares F-statistic: 15.42
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.52e-05
Time: 04:53:32 Log-Likelihood: -98.917
No. Observations: 23 AIC: 205.8
Df Residuals: 19 BIC: 210.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 63.2267 40.400 1.565 0.134 -21.332 147.785
C(dose)[T.1] -96.3159 82.517 -1.167 0.258 -269.026 76.394
expression -1.6582 7.355 -0.225 0.824 -17.052 13.736
expression:C(dose)[T.1] 25.1290 14.047 1.789 0.090 -4.271 54.529
Omnibus: 0.031 Durbin-Watson: 1.691
Prob(Omnibus): 0.984 Jarque-Bera (JB): 0.222
Skew: -0.059 Prob(JB): 0.895
Kurtosis: 2.533 Cond. No. 142.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.660
Model: OLS Adj. R-squared: 0.626
Method: Least Squares F-statistic: 19.39
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.08e-05
Time: 04:53:32 Log-Likelihood: -100.71
No. Observations: 23 AIC: 207.4
Df Residuals: 20 BIC: 210.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 25.7578 36.398 0.708 0.487 -50.167 101.683
C(dose)[T.1] 50.4428 9.376 5.380 0.000 30.885 70.001
expression 5.2312 6.602 0.792 0.437 -8.540 19.002
Omnibus: 0.076 Durbin-Watson: 1.868
Prob(Omnibus): 0.963 Jarque-Bera (JB): 0.284
Skew: 0.077 Prob(JB): 0.867
Kurtosis: 2.478 Cond. No. 50.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:53:32 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.167
Model: OLS Adj. R-squared: 0.128
Method: Least Squares F-statistic: 4.220
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0526
Time: 04:53:32 Log-Likelihood: -111.00
No. Observations: 23 AIC: 226.0
Df Residuals: 21 BIC: 228.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -29.0306 53.348 -0.544 0.592 -139.973 81.912
expression 19.0678 9.282 2.054 0.053 -0.236 38.372
Omnibus: 3.243 Durbin-Watson: 2.235
Prob(Omnibus): 0.198 Jarque-Bera (JB): 1.371
Skew: -0.127 Prob(JB): 0.504
Kurtosis: 1.831 Cond. No. 47.9

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.403 0.537 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.468
Model: OLS Adj. R-squared: 0.323
Method: Least Squares F-statistic: 3.231
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0647
Time: 04:53:33 Log-Likelihood: -70.561
No. Observations: 15 AIC: 149.1
Df Residuals: 11 BIC: 152.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 27.6821 68.046 0.407 0.692 -122.086 177.450
C(dose)[T.1] 68.2821 112.140 0.609 0.555 -178.536 315.101
expression 8.1879 13.806 0.593 0.565 -22.198 38.574
expression:C(dose)[T.1] -4.1570 22.099 -0.188 0.854 -52.797 44.483
Omnibus: 2.097 Durbin-Watson: 0.805
Prob(Omnibus): 0.351 Jarque-Bera (JB): 1.413
Skew: -0.729 Prob(JB): 0.493
Kurtosis: 2.635 Cond. No. 92.7

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.467
Model: OLS Adj. R-squared: 0.378
Method: Least Squares F-statistic: 5.251
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0230
Time: 04:53:33 Log-Likelihood: -70.585
No. Observations: 15 AIC: 147.2
Df Residuals: 12 BIC: 149.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 35.5572 51.441 0.691 0.503 -76.524 147.638
C(dose)[T.1] 47.4152 15.734 3.014 0.011 13.135 81.696
expression 6.5656 10.338 0.635 0.537 -15.959 29.090
Omnibus: 2.235 Durbin-Watson: 0.848
Prob(Omnibus): 0.327 Jarque-Bera (JB): 1.419
Skew: -0.741 Prob(JB): 0.492
Kurtosis: 2.729 Cond. No. 35.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:53:33 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.063
Model: OLS Adj. R-squared: -0.009
Method: Least Squares F-statistic: 0.8753
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.367
Time: 04:53:33 Log-Likelihood: -74.811
No. Observations: 15 AIC: 153.6
Df Residuals: 13 BIC: 155.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 33.0825 65.500 0.505 0.622 -108.421 174.586
expression 12.1192 12.954 0.936 0.367 -15.866 40.105
Omnibus: 1.359 Durbin-Watson: 1.794
Prob(Omnibus): 0.507 Jarque-Bera (JB): 0.851
Skew: 0.184 Prob(JB): 0.653
Kurtosis: 1.892 Cond. No. 35.0