AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
3.276 | 0.085 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.701 |
Model: | OLS | Adj. R-squared: | 0.653 |
Method: | Least Squares | F-statistic: | 14.82 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.27e-05 |
Time: | 05:05:32 | Log-Likelihood: | -99.237 |
No. Observations: | 23 | AIC: | 206.5 |
Df Residuals: | 19 | BIC: | 211.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -68.6055 | 85.064 | -0.807 | 0.430 | -246.647 109.436 |
C(dose)[T.1] | 100.2893 | 110.318 | 0.909 | 0.375 | -130.608 331.187 |
expression | 16.5229 | 11.418 | 1.447 | 0.164 | -7.375 40.421 |
expression:C(dose)[T.1] | -5.5940 | 15.232 | -0.367 | 0.717 | -37.476 26.288 |
Omnibus: | 3.336 | Durbin-Watson: | 2.065 |
Prob(Omnibus): | 0.189 | Jarque-Bera (JB): | 1.414 |
Skew: | 0.159 | Prob(JB): | 0.493 |
Kurtosis: | 1.828 | Cond. No. | 261. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.698 |
Model: | OLS | Adj. R-squared: | 0.668 |
Method: | Least Squares | F-statistic: | 23.16 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 6.22e-06 |
Time: | 05:05:32 | Log-Likelihood: | -99.318 |
No. Observations: | 23 | AIC: | 204.6 |
Df Residuals: | 20 | BIC: | 208.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -45.2426 | 55.234 | -0.819 | 0.422 | -160.459 69.974 |
C(dose)[T.1] | 59.9142 | 8.905 | 6.728 | 0.000 | 41.340 78.489 |
expression | 13.3797 | 7.392 | 1.810 | 0.085 | -2.041 28.800 |
Omnibus: | 2.835 | Durbin-Watson: | 1.979 |
Prob(Omnibus): | 0.242 | Jarque-Bera (JB): | 1.364 |
Skew: | 0.208 | Prob(JB): | 0.506 |
Kurtosis: | 1.882 | Cond. No. | 101. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:05:32 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.016 |
Model: | OLS | Adj. R-squared: | -0.031 |
Method: | Least Squares | F-statistic: | 0.3381 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.567 |
Time: | 05:05:32 | Log-Likelihood: | -112.92 |
No. Observations: | 23 | AIC: | 229.8 |
Df Residuals: | 21 | BIC: | 232.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 129.5167 | 85.941 | 1.507 | 0.147 | -49.207 308.240 |
expression | -6.9186 | 11.898 | -0.581 | 0.567 | -31.662 17.825 |
Omnibus: | 2.438 | Durbin-Watson: | 2.425 |
Prob(Omnibus): | 0.296 | Jarque-Bera (JB): | 1.293 |
Skew: | 0.224 | Prob(JB): | 0.524 |
Kurtosis: | 1.928 | Cond. No. | 88.4 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
4.591 | 0.053 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.630 |
Model: | OLS | Adj. R-squared: | 0.529 |
Method: | Least Squares | F-statistic: | 6.234 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00991 |
Time: | 05:05:32 | Log-Likelihood: | -67.850 |
No. Observations: | 15 | AIC: | 143.7 |
Df Residuals: | 11 | BIC: | 146.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -206.2803 | 283.891 | -0.727 | 0.483 | -831.121 418.561 |
C(dose)[T.1] | -326.0363 | 418.927 | -0.778 | 0.453 | -1248.088 596.016 |
expression | 31.5192 | 32.672 | 0.965 | 0.355 | -40.392 103.430 |
expression:C(dose)[T.1] | 44.7152 | 48.745 | 0.917 | 0.379 | -62.571 152.001 |
Omnibus: | 2.481 | Durbin-Watson: | 1.301 |
Prob(Omnibus): | 0.289 | Jarque-Bera (JB): | 1.401 |
Skew: | -0.747 | Prob(JB): | 0.496 |
Kurtosis: | 2.909 | Cond. No. | 705. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.601 |
Model: | OLS | Adj. R-squared: | 0.535 |
Method: | Least Squares | F-statistic: | 9.049 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00402 |
Time: | 05:05:32 | Log-Likelihood: | -68.403 |
No. Observations: | 15 | AIC: | 142.8 |
Df Residuals: | 12 | BIC: | 144.9 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -380.7306 | 209.387 | -1.818 | 0.094 | -836.945 75.484 |
C(dose)[T.1] | 58.0432 | 14.008 | 4.144 | 0.001 | 27.522 88.564 |
expression | 51.6082 | 24.086 | 2.143 | 0.053 | -0.870 104.087 |
Omnibus: | 2.365 | Durbin-Watson: | 1.495 |
Prob(Omnibus): | 0.307 | Jarque-Bera (JB): | 1.487 |
Skew: | -0.761 | Prob(JB): | 0.475 |
Kurtosis: | 2.751 | Cond. No. | 274. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:05:32 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.031 |
Model: | OLS | Adj. R-squared: | -0.044 |
Method: | Least Squares | F-statistic: | 0.4144 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.531 |
Time: | 05:05:32 | Log-Likelihood: | -75.065 |
No. Observations: | 15 | AIC: | 154.1 |
Df Residuals: | 13 | BIC: | 155.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -97.0240 | 296.400 | -0.327 | 0.749 | -737.357 543.309 |
expression | 22.1928 | 34.476 | 0.644 | 0.531 | -52.287 96.673 |
Omnibus: | 0.292 | Durbin-Watson: | 1.894 |
Prob(Omnibus): | 0.864 | Jarque-Bera (JB): | 0.448 |
Skew: | 0.055 | Prob(JB): | 0.799 |
Kurtosis: | 2.161 | Cond. No. | 258. |