AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.949 0.061 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.716
Model: OLS Adj. R-squared: 0.671
Method: Least Squares F-statistic: 15.98
Date: Tue, 03 Dec 2024 Prob (F-statistic): 1.98e-05
Time: 11:48:24 Log-Likelihood: -98.623
No. Observations: 23 AIC: 205.2
Df Residuals: 19 BIC: 209.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 9.4192 24.485 0.385 0.705 -41.828 60.666
C(dose)[T.1] 76.4636 33.501 2.282 0.034 6.346 146.582
expression 11.0669 5.890 1.879 0.076 -1.260 23.394
expression:C(dose)[T.1] -6.1037 7.768 -0.786 0.442 -22.362 10.155
Omnibus: 0.004 Durbin-Watson: 2.127
Prob(Omnibus): 0.998 Jarque-Bera (JB): 0.150
Skew: 0.027 Prob(JB): 0.928
Kurtosis: 2.608 Cond. No. 50.6

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.707
Model: OLS Adj. R-squared: 0.678
Method: Least Squares F-statistic: 24.12
Date: Tue, 03 Dec 2024 Prob (F-statistic): 4.67e-06
Time: 11:48:24 Log-Likelihood: -98.990
No. Observations: 23 AIC: 204.0
Df Residuals: 20 BIC: 207.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 23.6205 16.359 1.444 0.164 -10.505 57.746
C(dose)[T.1] 50.9373 8.105 6.285 0.000 34.031 67.843
expression 7.5579 3.803 1.987 0.061 -0.375 15.491
Omnibus: 0.583 Durbin-Watson: 2.155
Prob(Omnibus): 0.747 Jarque-Bera (JB): 0.389
Skew: 0.301 Prob(JB): 0.823
Kurtosis: 2.791 Cond. No. 18.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 03 Dec 2024 Prob (F-statistic): 3.51e-06
Time: 11:48:24 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.128
Model: OLS Adj. R-squared: 0.087
Method: Least Squares F-statistic: 3.086
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0936
Time: 11:48:24 Log-Likelihood: -111.53
No. Observations: 23 AIC: 227.1
Df Residuals: 21 BIC: 229.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 33.0267 27.422 1.204 0.242 -24.000 90.053
expression 11.1195 6.330 1.757 0.094 -2.045 24.284
Omnibus: 1.668 Durbin-Watson: 2.464
Prob(Omnibus): 0.434 Jarque-Bera (JB): 1.371
Skew: 0.564 Prob(JB): 0.504
Kurtosis: 2.603 Cond. No. 18.5

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.179 0.680 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.494
Model: OLS Adj. R-squared: 0.356
Method: Least Squares F-statistic: 3.576
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0504
Time: 11:48:24 Log-Likelihood: -70.195
No. Observations: 15 AIC: 148.4
Df Residuals: 11 BIC: 151.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 130.2632 68.754 1.895 0.085 -21.064 281.590
C(dose)[T.1] -34.1363 91.744 -0.372 0.717 -236.064 167.792
expression -9.0975 9.814 -0.927 0.374 -30.699 12.503
expression:C(dose)[T.1] 12.5122 13.982 0.895 0.390 -18.262 43.287
Omnibus: 1.872 Durbin-Watson: 1.155
Prob(Omnibus): 0.392 Jarque-Bera (JB): 1.212
Skew: -0.678 Prob(JB): 0.546
Kurtosis: 2.682 Cond. No. 103.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.457
Model: OLS Adj. R-squared: 0.366
Method: Least Squares F-statistic: 5.047
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0257
Time: 11:48:24 Log-Likelihood: -70.722
No. Observations: 15 AIC: 147.4
Df Residuals: 12 BIC: 149.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 87.6860 49.219 1.782 0.100 -19.553 194.924
C(dose)[T.1] 46.5457 16.833 2.765 0.017 9.870 83.221
expression -2.9330 6.932 -0.423 0.680 -18.037 12.171
Omnibus: 2.638 Durbin-Watson: 0.798
Prob(Omnibus): 0.267 Jarque-Bera (JB): 1.827
Skew: -0.832 Prob(JB): 0.401
Kurtosis: 2.604 Cond. No. 43.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.00629
Time: 11:48:24 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.111
Model: OLS Adj. R-squared: 0.042
Method: Least Squares F-statistic: 1.620
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.225
Time: 11:48:24 Log-Likelihood: -74.419
No. Observations: 15 AIC: 152.8
Df Residuals: 13 BIC: 154.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 158.3457 51.712 3.062 0.009 46.628 270.063
expression -10.0672 7.910 -1.273 0.225 -27.155 7.020
Omnibus: 3.289 Durbin-Watson: 1.277
Prob(Omnibus): 0.193 Jarque-Bera (JB): 1.256
Skew: 0.219 Prob(JB): 0.534
Kurtosis: 1.652 Cond. No. 36.1