AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.241 | 0.629 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.653 |
Model: | OLS | Adj. R-squared: | 0.598 |
Method: | Least Squares | F-statistic: | 11.93 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000128 |
Time: | 05:05:32 | Log-Likelihood: | -100.93 |
No. Observations: | 23 | AIC: | 209.9 |
Df Residuals: | 19 | BIC: | 214.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 104.2275 | 123.153 | 0.846 | 0.408 | -153.535 361.990 |
C(dose)[T.1] | 52.2582 | 230.581 | 0.227 | 0.823 | -430.353 534.869 |
expression | -9.4409 | 23.215 | -0.407 | 0.689 | -58.031 39.149 |
expression:C(dose)[T.1] | 0.0405 | 44.039 | 0.001 | 0.999 | -92.134 92.215 |
Omnibus: | 0.617 | Durbin-Watson: | 1.975 |
Prob(Omnibus): | 0.735 | Jarque-Bera (JB): | 0.630 |
Skew: | 0.034 | Prob(JB): | 0.730 |
Kurtosis: | 2.192 | Cond. No. | 333. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.653 |
Model: | OLS | Adj. R-squared: | 0.619 |
Method: | Least Squares | F-statistic: | 18.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.51e-05 |
Time: | 05:05:32 | Log-Likelihood: | -100.93 |
No. Observations: | 23 | AIC: | 207.9 |
Df Residuals: | 20 | BIC: | 211.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 104.1678 | 102.051 | 1.021 | 0.320 | -108.707 317.043 |
C(dose)[T.1] | 52.4703 | 8.895 | 5.899 | 0.000 | 33.916 71.025 |
expression | -9.4296 | 19.228 | -0.490 | 0.629 | -49.539 30.680 |
Omnibus: | 0.617 | Durbin-Watson: | 1.975 |
Prob(Omnibus): | 0.735 | Jarque-Bera (JB): | 0.630 |
Skew: | 0.035 | Prob(JB): | 0.730 |
Kurtosis: | 2.192 | Cond. No. | 128. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:05:32 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.050 |
Model: | OLS | Adj. R-squared: | 0.005 |
Method: | Least Squares | F-statistic: | 1.103 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.306 |
Time: | 05:05:32 | Log-Likelihood: | -112.52 |
No. Observations: | 23 | AIC: | 229.0 |
Df Residuals: | 21 | BIC: | 231.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 247.6841 | 160.096 | 1.547 | 0.137 | -85.253 580.621 |
expression | -31.9683 | 30.441 | -1.050 | 0.306 | -95.273 31.337 |
Omnibus: | 1.787 | Durbin-Watson: | 2.643 |
Prob(Omnibus): | 0.409 | Jarque-Bera (JB): | 1.166 |
Skew: | 0.259 | Prob(JB): | 0.558 |
Kurtosis: | 2.026 | Cond. No. | 124. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.005 | 0.942 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.480 |
Model: | OLS | Adj. R-squared: | 0.338 |
Method: | Least Squares | F-statistic: | 3.382 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0579 |
Time: | 05:05:32 | Log-Likelihood: | -70.399 |
No. Observations: | 15 | AIC: | 148.8 |
Df Residuals: | 11 | BIC: | 151.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 485.7968 | 547.715 | 0.887 | 0.394 | -719.716 1691.310 |
C(dose)[T.1] | -436.2593 | 602.200 | -0.724 | 0.484 | -1761.692 889.174 |
expression | -73.4735 | 96.167 | -0.764 | 0.461 | -285.137 138.190 |
expression:C(dose)[T.1] | 85.2448 | 105.704 | 0.806 | 0.437 | -147.409 317.899 |
Omnibus: | 2.700 | Durbin-Watson: | 0.686 |
Prob(Omnibus): | 0.259 | Jarque-Bera (JB): | 1.699 |
Skew: | -0.817 | Prob(JB): | 0.428 |
Kurtosis: | 2.778 | Cond. No. | 682. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.357 |
Method: | Least Squares | F-statistic: | 4.890 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0280 |
Time: | 05:05:32 | Log-Likelihood: | -70.830 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 84.0372 | 224.262 | 0.375 | 0.714 | -404.588 572.662 |
C(dose)[T.1] | 49.2112 | 15.737 | 3.127 | 0.009 | 14.923 83.500 |
expression | -2.9168 | 39.333 | -0.074 | 0.942 | -88.616 82.782 |
Omnibus: | 2.630 | Durbin-Watson: | 0.805 |
Prob(Omnibus): | 0.268 | Jarque-Bera (JB): | 1.853 |
Skew: | -0.833 | Prob(JB): | 0.396 |
Kurtosis: | 2.568 | Cond. No. | 169. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:05:32 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.000 |
Model: | OLS | Adj. R-squared: | -0.077 |
Method: | Least Squares | F-statistic: | 0.0007141 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.979 |
Time: | 05:05:32 | Log-Likelihood: | -75.300 |
No. Observations: | 15 | AIC: | 154.6 |
Df Residuals: | 13 | BIC: | 156.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 101.4161 | 290.178 | 0.349 | 0.732 | -525.474 728.307 |
expression | -1.3603 | 50.905 | -0.027 | 0.979 | -111.335 108.614 |
Omnibus: | 0.614 | Durbin-Watson: | 1.622 |
Prob(Omnibus): | 0.736 | Jarque-Bera (JB): | 0.585 |
Skew: | 0.051 | Prob(JB): | 0.746 |
Kurtosis: | 2.038 | Cond. No. | 168. |