AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.746 0.398 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.693
Model: OLS Adj. R-squared: 0.645
Method: Least Squares F-statistic: 14.30
Date: Thu, 21 Nov 2024 Prob (F-statistic): 4.11e-05
Time: 04:42:05 Log-Likelihood: -99.521
No. Observations: 23 AIC: 207.0
Df Residuals: 19 BIC: 211.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 271.5362 131.749 2.061 0.053 -4.218 547.291
C(dose)[T.1] -165.4487 157.387 -1.051 0.306 -494.863 163.965
expression -29.9433 18.135 -1.651 0.115 -67.900 8.013
expression:C(dose)[T.1] 30.1429 21.612 1.395 0.179 -15.092 75.378
Omnibus: 0.120 Durbin-Watson: 1.882
Prob(Omnibus): 0.942 Jarque-Bera (JB): 0.337
Skew: -0.068 Prob(JB): 0.845
Kurtosis: 2.423 Cond. No. 395.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.662
Model: OLS Adj. R-squared: 0.628
Method: Least Squares F-statistic: 19.56
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.96e-05
Time: 04:42:05 Log-Likelihood: -100.64
No. Observations: 23 AIC: 207.3
Df Residuals: 20 BIC: 210.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 117.5043 73.516 1.598 0.126 -35.848 270.856
C(dose)[T.1] 53.7440 8.624 6.232 0.000 35.756 71.732
expression -8.7209 10.096 -0.864 0.398 -29.780 12.338
Omnibus: 0.030 Durbin-Watson: 1.920
Prob(Omnibus): 0.985 Jarque-Bera (JB): 0.237
Skew: 0.033 Prob(JB): 0.888
Kurtosis: 2.507 Cond. No. 127.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:42:05 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.005
Model: OLS Adj. R-squared: -0.043
Method: Least Squares F-statistic: 0.09808
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.757
Time: 04:42:05 Log-Likelihood: -113.05
No. Observations: 23 AIC: 230.1
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 118.1908 123.058 0.960 0.348 -137.723 374.105
expression -5.2846 16.874 -0.313 0.757 -40.376 29.807
Omnibus: 3.439 Durbin-Watson: 2.477
Prob(Omnibus): 0.179 Jarque-Bera (JB): 1.662
Skew: 0.328 Prob(JB): 0.436
Kurtosis: 1.858 Cond. No. 127.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.526 0.240 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.537
Model: OLS Adj. R-squared: 0.411
Method: Least Squares F-statistic: 4.254
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0318
Time: 04:42:05 Log-Likelihood: -69.523
No. Observations: 15 AIC: 147.0
Df Residuals: 11 BIC: 149.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 246.1726 124.373 1.979 0.073 -27.570 519.915
C(dose)[T.1] -108.7020 202.237 -0.537 0.602 -553.823 336.419
expression -23.6735 16.408 -1.443 0.177 -59.787 12.440
expression:C(dose)[T.1] 20.9370 26.564 0.788 0.447 -37.530 79.404
Omnibus: 2.652 Durbin-Watson: 1.101
Prob(Omnibus): 0.266 Jarque-Bera (JB): 1.497
Skew: -0.773 Prob(JB): 0.473
Kurtosis: 2.932 Cond. No. 263.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.511
Model: OLS Adj. R-squared: 0.429
Method: Least Squares F-statistic: 6.269
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0137
Time: 04:42:05 Log-Likelihood: -69.935
No. Observations: 15 AIC: 145.9
Df Residuals: 12 BIC: 148.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 185.8619 96.487 1.926 0.078 -24.366 396.090
C(dose)[T.1] 50.2507 14.850 3.384 0.005 17.896 82.606
expression -15.6857 12.698 -1.235 0.240 -43.353 11.982
Omnibus: 2.494 Durbin-Watson: 0.887
Prob(Omnibus): 0.287 Jarque-Bera (JB): 1.790
Skew: -0.812 Prob(JB): 0.409
Kurtosis: 2.523 Cond. No. 101.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:42:05 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.044
Model: OLS Adj. R-squared: -0.029
Method: Least Squares F-statistic: 0.6024
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.452
Time: 04:42:05 Log-Likelihood: -74.960
No. Observations: 15 AIC: 153.9
Df Residuals: 13 BIC: 155.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 193.9257 129.553 1.497 0.158 -85.956 473.807
expression -13.2159 17.027 -0.776 0.452 -50.001 23.569
Omnibus: 3.364 Durbin-Watson: 1.827
Prob(Omnibus): 0.186 Jarque-Bera (JB): 1.346
Skew: 0.300 Prob(JB): 0.510
Kurtosis: 1.661 Cond. No. 101.