AIM Score vs. Gene Expression 
		Full X range:
		
 
		 
			
		
		Auto X range:
		
 
		
		Group Comparisons: Boxplots
		 
		 
		
		
		 CP73 
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic | p-value | df difference | 
		 | 0.775 | 0.389 | 1.0 | 
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.690 | 
  | Model: | OLS | Adj. R-squared: | 0.641 | 
  | Method: | Least Squares | F-statistic: | 14.11 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 4.48e-05 | 
  | Time: | 15:28:18 | Log-Likelihood: | -99.627 | 
  | No. Observations: | 23 | AIC: | 207.3 | 
  | Df Residuals: | 19 | BIC: | 211.8 | 
  | Df Model: | 3 |  |  | 
             |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 199.8941 | 103.553 | 1.930 | 0.069 | -16.845   416.634 | 
  | C(dose)[T.1] | -235.2051 | 220.143 | -1.068 | 0.299 | -695.971   225.560 | 
  | expression | -21.0898 | 14.967 | -1.409 | 0.175 | -52.415    10.236 | 
  | expression:C(dose)[T.1] | 41.7075 | 31.770 | 1.313 | 0.205 | -24.788   108.203 | 
  | Omnibus: | 0.201 | Durbin-Watson: | 1.717 | 
  | Prob(Omnibus): | 0.905 | Jarque-Bera (JB): | 0.315 | 
  | Skew: | 0.189 | Prob(JB): | 0.854 | 
  | Kurtosis: | 2.568 | Cond. No. | 430. | 
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.662 | 
  | Model: | OLS | Adj. R-squared: | 0.628 | 
  | Method: | Least Squares | F-statistic: | 19.60 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 1.94e-05 | 
  | Time: | 15:28:18 | Log-Likelihood: | -100.63 | 
  | No. Observations: | 23 | AIC: | 207.3 | 
  | Df Residuals: | 20 | BIC: | 210.7 | 
  | Df Model: | 2 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 135.9538 | 93.022 | 1.462 | 0.159 | -58.087   329.995 | 
  | C(dose)[T.1] | 53.5847 | 8.609 | 6.224 | 0.000 | 35.626    71.543 | 
  | expression | -11.8336 | 13.438 | -0.881 | 0.389 | -39.866    16.199 | 
  | Omnibus: | 0.187 | Durbin-Watson: | 1.676 | 
  | Prob(Omnibus): | 0.911 | Jarque-Bera (JB): | 0.384 | 
  | Skew: | 0.128 | Prob(JB): | 0.825 | 
  | Kurtosis: | 2.421 | Cond. No. | 153. | 
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.649 | 
  | Model: | OLS | Adj. R-squared: | 0.632 | 
  | Method: | Least Squares | F-statistic: | 38.84 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 3.51e-06 | 
  | Time: | 15:28:18 | Log-Likelihood: | -101.06 | 
  | No. Observations: | 23 | AIC: | 206.1 | 
  | Df Residuals: | 21 | BIC: | 208.4 | 
  | Df Model: | 1 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900    66.517 | 
  | C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539    71.135 | 
  | Omnibus: | 0.322 | Durbin-Watson: | 1.888 | 
  | Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 | 
  | Skew: | 0.060 | Prob(JB): | 0.785 | 
  | Kurtosis: | 2.299 | Cond. No. | 2.57 | 
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.008 | 
  | Model: | OLS | Adj. R-squared: | -0.039 | 
  | Method: | Least Squares | F-statistic: | 0.1642 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.689 | 
  | Time: | 15:28:18 | Log-Likelihood: | -113.02 | 
  | No. Observations: | 23 | AIC: | 230.0 | 
  | Df Residuals: | 21 | BIC: | 232.3 | 
  | Df Model: | 1 |  |  | 
       |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 142.6853 | 155.565 | 0.917 | 0.369 | -180.830   466.201 | 
  | expression | -9.1022 | 22.463 | -0.405 | 0.689 | -55.817    37.613 | 
  | Omnibus: | 3.926 | Durbin-Watson: | 2.470 | 
  | Prob(Omnibus): | 0.140 | Jarque-Bera (JB): | 1.861 | 
  | Skew: | 0.380 | Prob(JB): | 0.394 | 
  | Kurtosis: | 1.832 | Cond. No. | 153. | 
			 
		
			
		
		 
	
		
		 CP101 
		
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic | p-value | df difference | 
		 | 0.803 | 0.388 | 1.0 | 
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.499 | 
  | Model: | OLS | Adj. R-squared: | 0.363 | 
  | Method: | Least Squares | F-statistic: | 3.659 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.0475 | 
  | Time: | 15:28:18 | Log-Likelihood: | -70.109 | 
  | No. Observations: | 15 | AIC: | 148.2 | 
  | Df Residuals: | 11 | BIC: | 151.1 | 
  | Df Model: | 3 |  |  | 
             |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | -158.4416 | 215.049 | -0.737 | 0.477 | -631.761   314.877 | 
  | C(dose)[T.1] | 250.7243 | 340.768 | 0.736 | 0.477 | -499.301  1000.749 | 
  | expression | 30.7854 | 29.269 | 1.052 | 0.315 | -33.635    95.206 | 
  | expression:C(dose)[T.1] | -27.4952 | 46.164 | -0.596 | 0.563 | -129.102    74.111 | 
  | Omnibus: | 2.136 | Durbin-Watson: | 0.783 | 
  | Prob(Omnibus): | 0.344 | Jarque-Bera (JB): | 1.509 | 
  | Skew: | -0.744 | Prob(JB): | 0.470 | 
  | Kurtosis: | 2.556 | Cond. No. | 417. | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.483 | 
  | Model: | OLS | Adj. R-squared: | 0.397 | 
  | Method: | Least Squares | F-statistic: | 5.613 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.0190 | 
  | Time: | 15:28:18 | Log-Likelihood: | -70.347 | 
  | No. Observations: | 15 | AIC: | 146.7 | 
  | Df Residuals: | 12 | BIC: | 148.8 | 
  | Df Model: | 2 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | -77.3496 | 161.922 | -0.478 | 0.641 | -430.147   275.447 | 
  | C(dose)[T.1] | 47.9798 | 15.298 | 3.136 | 0.009 | 14.648    81.312 | 
  | expression | 19.7328 | 22.017 | 0.896 | 0.388 | -28.239    67.704 | 
  | Omnibus: | 2.085 | Durbin-Watson: | 0.648 | 
  | Prob(Omnibus): | 0.353 | Jarque-Bera (JB): | 1.582 | 
  | Skew: | -0.735 | Prob(JB): | 0.453 | 
  | Kurtosis: | 2.393 | Cond. No. | 160. | 
		
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.449 | 
  | Model: | OLS | Adj. R-squared: | 0.406 | 
  | Method: | Least Squares | F-statistic: | 10.58 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.00629 | 
  | Time: | 15:28:18 | Log-Likelihood: | -70.833 | 
  | No. Observations: | 15 | AIC: | 145.7 | 
  | Df Residuals: | 13 | BIC: | 147.1 | 
  | Df Model: | 1 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570    91.287 | 
  | C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527    81.866 | 
  | Omnibus: | 2.713 | Durbin-Watson: | 0.810 | 
  | Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 | 
  | Skew: | -0.843 | Prob(JB): | 0.393 | 
  | Kurtosis: | 2.619 | Cond. No. | 2.70 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.060 | 
  | Model: | OLS | Adj. R-squared: | -0.012 | 
  | Method: | Least Squares | F-statistic: | 0.8278 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.379 | 
  | Time: | 15:28:18 | Log-Likelihood: | -74.837 | 
  | No. Observations: | 15 | AIC: | 153.7 | 
  | Df Residuals: | 13 | BIC: | 155.1 | 
  | Df Model: | 1 |  |  | 
       |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | -96.9179 | 209.701 | -0.462 | 0.652 | -549.949   356.113 | 
  | expression | 25.8602 | 28.423 | 0.910 | 0.379 | -35.543    87.263 | 
  | Omnibus: | 3.273 | Durbin-Watson: | 1.577 | 
  | Prob(Omnibus): | 0.195 | Jarque-Bera (JB): | 1.317 | 
  | Skew: | 0.286 | Prob(JB): | 0.518 | 
  | Kurtosis: | 1.666 | Cond. No. | 160. |