AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.026 0.874 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.651
Model: OLS Adj. R-squared: 0.596
Method: Least Squares F-statistic: 11.80
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.000137
Time: 11:47:02 Log-Likelihood: -101.01
No. Observations: 23 AIC: 210.0
Df Residuals: 19 BIC: 214.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 49.2013 21.970 2.239 0.037 3.217 95.186
C(dose)[T.1] 65.9396 48.807 1.351 0.193 -36.215 168.094
expression 1.3305 5.600 0.238 0.815 -10.391 13.052
expression:C(dose)[T.1] -3.8604 15.409 -0.251 0.805 -36.111 28.390
Omnibus: 0.338 Durbin-Watson: 1.879
Prob(Omnibus): 0.844 Jarque-Bera (JB): 0.492
Skew: 0.010 Prob(JB): 0.782
Kurtosis: 2.284 Cond. No. 46.0

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.650
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.53
Date: Tue, 03 Dec 2024 Prob (F-statistic): 2.80e-05
Time: 11:47:02 Log-Likelihood: -101.05
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 51.1204 20.104 2.543 0.019 9.185 93.056
C(dose)[T.1] 53.9615 9.583 5.631 0.000 33.972 73.951
expression 0.8206 5.094 0.161 0.874 -9.805 11.446
Omnibus: 0.403 Durbin-Watson: 1.899
Prob(Omnibus): 0.817 Jarque-Bera (JB): 0.532
Skew: 0.068 Prob(JB): 0.767
Kurtosis: 2.268 Cond. No. 18.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 03 Dec 2024 Prob (F-statistic): 3.51e-06
Time: 11:47:02 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.094
Model: OLS Adj. R-squared: 0.051
Method: Least Squares F-statistic: 2.175
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.155
Time: 11:47:02 Log-Likelihood: -111.97
No. Observations: 23 AIC: 227.9
Df Residuals: 21 BIC: 230.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 116.3611 25.780 4.514 0.000 62.748 169.974
expression -10.7798 7.310 -1.475 0.155 -25.981 4.422
Omnibus: 3.005 Durbin-Watson: 2.176
Prob(Omnibus): 0.223 Jarque-Bera (JB): 1.295
Skew: 0.072 Prob(JB): 0.523
Kurtosis: 1.847 Cond. No. 14.2

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
7.136 0.020 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.562
Method: Least Squares F-statistic: 6.984
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.00674
Time: 11:47:02 Log-Likelihood: -67.302
No. Observations: 15 AIC: 142.6
Df Residuals: 11 BIC: 145.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 121.5003 28.694 4.234 0.001 58.345 184.655
C(dose)[T.1] 52.8653 46.601 1.134 0.281 -49.702 155.433
expression -11.3970 5.708 -1.997 0.071 -23.960 1.166
expression:C(dose)[T.1] -2.1560 10.125 -0.213 0.835 -24.442 20.130
Omnibus: 0.068 Durbin-Watson: 1.849
Prob(Omnibus): 0.967 Jarque-Bera (JB): 0.108
Skew: 0.076 Prob(JB): 0.948
Kurtosis: 2.614 Cond. No. 43.1

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.654
Model: OLS Adj. R-squared: 0.597
Method: Least Squares F-statistic: 11.36
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.00171
Time: 11:47:02 Log-Likelihood: -67.333
No. Observations: 15 AIC: 140.7
Df Residuals: 12 BIC: 142.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 124.7508 23.310 5.352 0.000 73.963 175.539
C(dose)[T.1] 43.3482 12.655 3.425 0.005 15.775 70.921
expression -12.0822 4.523 -2.671 0.020 -21.937 -2.227
Omnibus: 0.034 Durbin-Watson: 1.904
Prob(Omnibus): 0.983 Jarque-Bera (JB): 0.104
Skew: -0.017 Prob(JB): 0.949
Kurtosis: 2.594 Cond. No. 19.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.00629
Time: 11:47:02 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.316
Model: OLS Adj. R-squared: 0.264
Method: Least Squares F-statistic: 6.015
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0291
Time: 11:47:02 Log-Likelihood: -72.448
No. Observations: 15 AIC: 148.9
Df Residuals: 13 BIC: 150.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 159.8944 28.280 5.654 0.000 98.798 220.990
expression -14.7625 6.019 -2.453 0.029 -27.766 -1.759
Omnibus: 2.484 Durbin-Watson: 2.127
Prob(Omnibus): 0.289 Jarque-Bera (JB): 1.866
Skew: 0.808 Prob(JB): 0.393
Kurtosis: 2.391 Cond. No. 16.5