AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.339 | 0.567 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.666 |
Model: | OLS | Adj. R-squared: | 0.613 |
Method: | Least Squares | F-statistic: | 12.61 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 9.12e-05 |
Time: | 04:41:02 | Log-Likelihood: | -100.51 |
No. Observations: | 23 | AIC: | 209.0 |
Df Residuals: | 19 | BIC: | 213.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 51.3935 | 187.907 | 0.274 | 0.787 | -341.900 444.687 |
C(dose)[T.1] | -186.9366 | 313.277 | -0.597 | 0.558 | -842.634 468.761 |
expression | 0.2934 | 19.576 | 0.015 | 0.988 | -40.679 41.266 |
expression:C(dose)[T.1] | 26.2633 | 33.655 | 0.780 | 0.445 | -44.177 96.704 |
Omnibus: | 2.919 | Durbin-Watson: | 1.761 |
Prob(Omnibus): | 0.232 | Jarque-Bera (JB): | 1.488 |
Skew: | 0.288 | Prob(JB): | 0.475 |
Kurtosis: | 1.895 | Cond. No. | 820. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.655 |
Model: | OLS | Adj. R-squared: | 0.620 |
Method: | Least Squares | F-statistic: | 18.98 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.40e-05 |
Time: | 04:41:02 | Log-Likelihood: | -100.87 |
No. Observations: | 23 | AIC: | 207.7 |
Df Residuals: | 20 | BIC: | 211.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -33.8555 | 151.388 | -0.224 | 0.825 | -349.644 281.933 |
C(dose)[T.1] | 57.3788 | 11.128 | 5.156 | 0.000 | 34.167 80.591 |
expression | 9.1792 | 15.767 | 0.582 | 0.567 | -23.710 42.069 |
Omnibus: | 1.462 | Durbin-Watson: | 1.857 |
Prob(Omnibus): | 0.482 | Jarque-Bera (JB): | 0.964 |
Skew: | 0.140 | Prob(JB): | 0.617 |
Kurtosis: | 2.037 | Cond. No. | 332. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:41:02 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.196 |
Model: | OLS | Adj. R-squared: | 0.158 |
Method: | Least Squares | F-statistic: | 5.124 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0343 |
Time: | 04:41:02 | Log-Likelihood: | -110.59 |
No. Observations: | 23 | AIC: | 225.2 |
Df Residuals: | 21 | BIC: | 227.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 469.5354 | 172.337 | 2.725 | 0.013 | 111.140 827.930 |
expression | -41.5438 | 18.353 | -2.264 | 0.034 | -79.712 -3.376 |
Omnibus: | 3.331 | Durbin-Watson: | 2.226 |
Prob(Omnibus): | 0.189 | Jarque-Bera (JB): | 1.383 |
Skew: | 0.121 | Prob(JB): | 0.501 |
Kurtosis: | 1.823 | Cond. No. | 253. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.004 | 0.949 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.494 |
Model: | OLS | Adj. R-squared: | 0.356 |
Method: | Least Squares | F-statistic: | 3.575 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0504 |
Time: | 04:41:02 | Log-Likelihood: | -70.196 |
No. Observations: | 15 | AIC: | 148.4 |
Df Residuals: | 11 | BIC: | 151.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 712.8116 | 803.393 | 0.887 | 0.394 | -1055.445 2481.068 |
C(dose)[T.1] | -881.6243 | 944.646 | -0.933 | 0.371 | -2960.775 1197.527 |
expression | -61.6748 | 76.767 | -0.803 | 0.439 | -230.638 107.288 |
expression:C(dose)[T.1] | 89.0342 | 90.336 | 0.986 | 0.346 | -109.794 287.862 |
Omnibus: | 1.255 | Durbin-Watson: | 1.061 |
Prob(Omnibus): | 0.534 | Jarque-Bera (JB): | 0.943 |
Skew: | -0.563 | Prob(JB): | 0.624 |
Kurtosis: | 2.509 | Cond. No. | 1.86e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.357 |
Method: | Least Squares | F-statistic: | 4.889 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0280 |
Time: | 04:41:02 | Log-Likelihood: | -70.830 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 40.0002 | 423.089 | 0.095 | 0.926 | -881.831 961.831 |
C(dose)[T.1] | 49.2787 | 15.788 | 3.121 | 0.009 | 14.880 83.678 |
expression | 2.6211 | 40.417 | 0.065 | 0.949 | -85.439 90.682 |
Omnibus: | 2.616 | Durbin-Watson: | 0.811 |
Prob(Omnibus): | 0.270 | Jarque-Bera (JB): | 1.806 |
Skew: | -0.827 | Prob(JB): | 0.405 |
Kurtosis: | 2.609 | Cond. No. | 569. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:41:02 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.002 |
Model: | OLS | Adj. R-squared: | -0.075 |
Method: | Least Squares | F-statistic: | 0.02079 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.888 |
Time: | 04:41:02 | Log-Likelihood: | -75.288 |
No. Observations: | 15 | AIC: | 154.6 |
Df Residuals: | 13 | BIC: | 156.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 172.1507 | 544.413 | 0.316 | 0.757 | -1003.982 1348.284 |
expression | -7.5122 | 52.100 | -0.144 | 0.888 | -120.068 105.043 |
Omnibus: | 0.796 | Durbin-Watson: | 1.623 |
Prob(Omnibus): | 0.672 | Jarque-Bera (JB): | 0.649 |
Skew: | 0.059 | Prob(JB): | 0.723 |
Kurtosis: | 1.988 | Cond. No. | 565. |