AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.593 | 0.450 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.660 |
Model: | OLS | Adj. R-squared: | 0.607 |
Method: | Least Squares | F-statistic: | 12.31 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000106 |
Time: | 03:42:30 | Log-Likelihood: | -100.69 |
No. Observations: | 23 | AIC: | 209.4 |
Df Residuals: | 19 | BIC: | 213.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 183.8535 | 170.577 | 1.078 | 0.295 | -173.167 540.874 |
C(dose)[T.1] | -20.6316 | 303.086 | -0.068 | 0.946 | -654.998 613.735 |
expression | -13.2126 | 17.373 | -0.761 | 0.456 | -49.575 23.149 |
expression:C(dose)[T.1] | 7.6480 | 30.469 | 0.251 | 0.805 | -56.125 71.421 |
Omnibus: | 1.263 | Durbin-Watson: | 1.991 |
Prob(Omnibus): | 0.532 | Jarque-Bera (JB): | 0.870 |
Skew: | -0.059 | Prob(JB): | 0.647 |
Kurtosis: | 2.055 | Cond. No. | 828. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.659 |
Model: | OLS | Adj. R-squared: | 0.625 |
Method: | Least Squares | F-statistic: | 19.34 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.12e-05 |
Time: | 03:42:30 | Log-Likelihood: | -100.73 |
No. Observations: | 23 | AIC: | 207.5 |
Df Residuals: | 20 | BIC: | 210.9 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 159.4565 | 136.853 | 1.165 | 0.258 | -126.013 444.926 |
C(dose)[T.1] | 55.4097 | 9.052 | 6.121 | 0.000 | 36.527 74.293 |
expression | -10.7262 | 13.934 | -0.770 | 0.450 | -39.792 18.339 |
Omnibus: | 1.121 | Durbin-Watson: | 1.966 |
Prob(Omnibus): | 0.571 | Jarque-Bera (JB): | 0.819 |
Skew: | -0.029 | Prob(JB): | 0.664 |
Kurtosis: | 2.077 | Cond. No. | 318. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:42:30 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.021 |
Model: | OLS | Adj. R-squared: | -0.026 |
Method: | Least Squares | F-statistic: | 0.4426 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.513 |
Time: | 03:42:30 | Log-Likelihood: | -112.86 |
No. Observations: | 23 | AIC: | 229.7 |
Df Residuals: | 21 | BIC: | 232.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -65.2939 | 218.086 | -0.299 | 0.768 | -518.829 388.242 |
expression | 14.6408 | 22.007 | 0.665 | 0.513 | -31.125 60.406 |
Omnibus: | 3.962 | Durbin-Watson: | 2.425 |
Prob(Omnibus): | 0.138 | Jarque-Bera (JB): | 1.675 |
Skew: | 0.278 | Prob(JB): | 0.433 |
Kurtosis: | 1.801 | Cond. No. | 306. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.013 | 0.913 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.603 |
Model: | OLS | Adj. R-squared: | 0.495 |
Method: | Least Squares | F-statistic: | 5.581 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0142 |
Time: | 03:42:30 | Log-Likelihood: | -68.362 |
No. Observations: | 15 | AIC: | 144.7 |
Df Residuals: | 11 | BIC: | 147.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 457.8175 | 290.369 | 1.577 | 0.143 | -181.281 1096.916 |
C(dose)[T.1] | -950.3814 | 483.633 | -1.965 | 0.075 | -2014.850 114.087 |
expression | -43.4612 | 32.306 | -1.345 | 0.206 | -114.567 27.645 |
expression:C(dose)[T.1] | 111.0201 | 53.687 | 2.068 | 0.063 | -7.144 229.185 |
Omnibus: | 1.564 | Durbin-Watson: | 0.583 |
Prob(Omnibus): | 0.457 | Jarque-Bera (JB): | 0.210 |
Skew: | -0.076 | Prob(JB): | 0.900 |
Kurtosis: | 3.559 | Cond. No. | 794. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.358 |
Method: | Least Squares | F-statistic: | 4.896 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0279 |
Time: | 03:42:30 | Log-Likelihood: | -70.825 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 96.7126 | 261.755 | 0.369 | 0.718 | -473.601 667.027 |
C(dose)[T.1] | 49.3096 | 15.764 | 3.128 | 0.009 | 14.963 83.656 |
expression | -3.2601 | 29.113 | -0.112 | 0.913 | -66.691 60.171 |
Omnibus: | 2.642 | Durbin-Watson: | 0.795 |
Prob(Omnibus): | 0.267 | Jarque-Bera (JB): | 1.817 |
Skew: | -0.831 | Prob(JB): | 0.403 |
Kurtosis: | 2.618 | Cond. No. | 305. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:42:30 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.000 |
Model: | OLS | Adj. R-squared: | -0.077 |
Method: | Least Squares | F-statistic: | 0.004689 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.946 |
Time: | 03:42:30 | Log-Likelihood: | -75.297 |
No. Observations: | 15 | AIC: | 154.6 |
Df Residuals: | 13 | BIC: | 156.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 70.4858 | 338.667 | 0.208 | 0.838 | -661.161 802.132 |
expression | 2.5754 | 37.609 | 0.068 | 0.946 | -78.673 83.824 |
Omnibus: | 0.428 | Durbin-Watson: | 1.633 |
Prob(Omnibus): | 0.807 | Jarque-Bera (JB): | 0.510 |
Skew: | 0.010 | Prob(JB): | 0.775 |
Kurtosis: | 2.097 | Cond. No. | 304. |