AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.078 | 0.783 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.651 |
Model: | OLS | Adj. R-squared: | 0.596 |
Method: | Least Squares | F-statistic: | 11.82 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000135 |
Time: | 05:16:20 | Log-Likelihood: | -100.99 |
No. Observations: | 23 | AIC: | 210.0 |
Df Residuals: | 19 | BIC: | 214.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 52.8822 | 137.144 | 0.386 | 0.704 | -234.164 339.929 |
C(dose)[T.1] | 17.0233 | 176.395 | 0.097 | 0.924 | -352.176 386.223 |
expression | 0.2278 | 23.533 | 0.010 | 0.992 | -49.027 49.482 |
expression:C(dose)[T.1] | 6.1069 | 30.020 | 0.203 | 0.841 | -56.725 68.939 |
Omnibus: | 0.126 | Durbin-Watson: | 1.915 |
Prob(Omnibus): | 0.939 | Jarque-Bera (JB): | 0.345 |
Skew: | 0.059 | Prob(JB): | 0.842 |
Kurtosis: | 2.412 | Cond. No. | 326. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.61 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.73e-05 |
Time: | 05:16:20 | Log-Likelihood: | -101.02 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 20 | BIC: | 211.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 31.0338 | 83.218 | 0.373 | 0.713 | -142.557 204.625 |
C(dose)[T.1] | 52.8593 | 8.919 | 5.927 | 0.000 | 34.256 71.463 |
expression | 3.9806 | 14.256 | 0.279 | 0.783 | -25.758 33.719 |
Omnibus: | 0.212 | Durbin-Watson: | 1.900 |
Prob(Omnibus): | 0.899 | Jarque-Bera (JB): | 0.414 |
Skew: | 0.008 | Prob(JB): | 0.813 |
Kurtosis: | 2.343 | Cond. No. | 116. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:16:20 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.036 |
Model: | OLS | Adj. R-squared: | -0.009 |
Method: | Least Squares | F-statistic: | 0.7935 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.383 |
Time: | 05:16:20 | Log-Likelihood: | -112.68 |
No. Observations: | 23 | AIC: | 229.4 |
Df Residuals: | 21 | BIC: | 231.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -39.0077 | 133.467 | -0.292 | 0.773 | -316.567 238.552 |
expression | 20.1939 | 22.669 | 0.891 | 0.383 | -26.950 67.337 |
Omnibus: | 1.021 | Durbin-Watson: | 2.576 |
Prob(Omnibus): | 0.600 | Jarque-Bera (JB): | 0.863 |
Skew: | 0.209 | Prob(JB): | 0.650 |
Kurtosis: | 2.148 | Cond. No. | 114. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.575 | 0.463 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.474 |
Model: | OLS | Adj. R-squared: | 0.331 |
Method: | Least Squares | F-statistic: | 3.309 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0611 |
Time: | 05:16:20 | Log-Likelihood: | -70.476 |
No. Observations: | 15 | AIC: | 149.0 |
Df Residuals: | 11 | BIC: | 151.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -17.0768 | 168.201 | -0.102 | 0.921 | -387.285 353.132 |
C(dose)[T.1] | 68.9683 | 208.013 | 0.332 | 0.746 | -388.866 526.802 |
expression | 16.8521 | 33.461 | 0.504 | 0.624 | -56.796 90.500 |
expression:C(dose)[T.1] | -3.7689 | 41.552 | -0.091 | 0.929 | -95.224 87.686 |
Omnibus: | 3.292 | Durbin-Watson: | 0.883 |
Prob(Omnibus): | 0.193 | Jarque-Bera (JB): | 2.280 |
Skew: | -0.938 | Prob(JB): | 0.320 |
Kurtosis: | 2.639 | Cond. No. | 192. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.474 |
Model: | OLS | Adj. R-squared: | 0.386 |
Method: | Least Squares | F-statistic: | 5.406 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0212 |
Time: | 05:16:20 | Log-Likelihood: | -70.482 |
No. Observations: | 15 | AIC: | 147.0 |
Df Residuals: | 12 | BIC: | 149.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -4.8208 | 95.941 | -0.050 | 0.961 | -213.858 204.216 |
C(dose)[T.1] | 50.1573 | 15.428 | 3.251 | 0.007 | 16.543 83.771 |
expression | 14.4080 | 19.001 | 0.758 | 0.463 | -26.992 55.808 |
Omnibus: | 3.300 | Durbin-Watson: | 0.849 |
Prob(Omnibus): | 0.192 | Jarque-Bera (JB): | 2.273 |
Skew: | -0.938 | Prob(JB): | 0.321 |
Kurtosis: | 2.654 | Cond. No. | 65.3 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:16:20 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.011 |
Model: | OLS | Adj. R-squared: | -0.065 |
Method: | Least Squares | F-statistic: | 0.1399 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.714 |
Time: | 05:16:20 | Log-Likelihood: | -75.220 |
No. Observations: | 15 | AIC: | 154.4 |
Df Residuals: | 13 | BIC: | 155.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 47.1935 | 124.644 | 0.379 | 0.711 | -222.083 316.470 |
expression | 9.3339 | 24.952 | 0.374 | 0.714 | -44.571 63.239 |
Omnibus: | 0.831 | Durbin-Watson: | 1.739 |
Prob(Omnibus): | 0.660 | Jarque-Bera (JB): | 0.657 |
Skew: | 0.032 | Prob(JB): | 0.720 |
Kurtosis: | 1.977 | Cond. No. | 64.1 |