AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.495 0.490 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.659
Model: OLS Adj. R-squared: 0.606
Method: Least Squares F-statistic: 12.26
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000108
Time: 04:50:31 Log-Likelihood: -100.72
No. Observations: 23 AIC: 209.4
Df Residuals: 19 BIC: 214.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 0.0576 77.385 0.001 0.999 -161.910 162.026
C(dose)[T.1] 87.7294 102.873 0.853 0.404 -127.586 303.045
expression 9.3607 13.335 0.702 0.491 -18.550 37.271
expression:C(dose)[T.1] -5.8357 17.965 -0.325 0.749 -43.437 31.766
Omnibus: 0.762 Durbin-Watson: 1.737
Prob(Omnibus): 0.683 Jarque-Bera (JB): 0.692
Skew: 0.043 Prob(JB): 0.708
Kurtosis: 2.155 Cond. No. 182.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.658
Model: OLS Adj. R-squared: 0.623
Method: Least Squares F-statistic: 19.20
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.22e-05
Time: 04:50:31 Log-Likelihood: -100.78
No. Observations: 23 AIC: 207.6
Df Residuals: 20 BIC: 211.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 18.6574 50.878 0.367 0.718 -87.472 124.786
C(dose)[T.1] 54.4412 8.804 6.184 0.000 36.076 72.806
expression 6.1454 8.734 0.704 0.490 -12.073 24.364
Omnibus: 0.928 Durbin-Watson: 1.839
Prob(Omnibus): 0.629 Jarque-Bera (JB): 0.753
Skew: 0.034 Prob(JB): 0.686
Kurtosis: 2.116 Cond. No. 69.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:50:31 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.003
Model: OLS Adj. R-squared: -0.045
Method: Least Squares F-statistic: 0.05910
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.810
Time: 04:50:31 Log-Likelihood: -113.07
No. Observations: 23 AIC: 230.1
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 99.5456 81.877 1.216 0.238 -70.727 269.819
expression -3.4793 14.311 -0.243 0.810 -33.241 26.282
Omnibus: 2.967 Durbin-Watson: 2.514
Prob(Omnibus): 0.227 Jarque-Bera (JB): 1.482
Skew: 0.278 Prob(JB): 0.477
Kurtosis: 1.887 Cond. No. 67.0

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.340 0.270 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.552
Model: OLS Adj. R-squared: 0.430
Method: Least Squares F-statistic: 4.518
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0268
Time: 04:50:31 Log-Likelihood: -69.278
No. Observations: 15 AIC: 146.6
Df Residuals: 11 BIC: 149.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 71.0932 228.207 0.312 0.761 -431.187 573.373
C(dose)[T.1] -268.8960 301.971 -0.890 0.392 -933.530 395.738
expression -0.5549 34.519 -0.016 0.987 -76.531 75.421
expression:C(dose)[T.1] 50.6155 46.694 1.084 0.302 -52.157 153.388
Omnibus: 2.368 Durbin-Watson: 1.009
Prob(Omnibus): 0.306 Jarque-Bera (JB): 1.042
Skew: -0.640 Prob(JB): 0.594
Kurtosis: 3.173 Cond. No. 365.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.504
Model: OLS Adj. R-squared: 0.422
Method: Least Squares F-statistic: 6.101
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0149
Time: 04:50:31 Log-Likelihood: -70.039
No. Observations: 15 AIC: 146.1
Df Residuals: 12 BIC: 148.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -111.5769 155.003 -0.720 0.485 -449.300 226.146
C(dose)[T.1] 57.9420 16.731 3.463 0.005 21.489 94.395
expression 27.1074 23.415 1.158 0.270 -23.908 78.123
Omnibus: 3.380 Durbin-Watson: 1.043
Prob(Omnibus): 0.184 Jarque-Bera (JB): 1.941
Skew: -0.881 Prob(JB): 0.379
Kurtosis: 3.008 Cond. No. 138.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:50:31 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.009
Model: OLS Adj. R-squared: -0.068
Method: Least Squares F-statistic: 0.1122
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.743
Time: 04:50:31 Log-Likelihood: -75.236
No. Observations: 15 AIC: 154.5
Df Residuals: 13 BIC: 155.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 154.8065 182.825 0.847 0.412 -240.164 549.777
expression -9.5063 28.383 -0.335 0.743 -70.824 51.811
Omnibus: 1.012 Durbin-Watson: 1.577
Prob(Omnibus): 0.603 Jarque-Bera (JB): 0.723
Skew: 0.098 Prob(JB): 0.697
Kurtosis: 1.943 Cond. No. 119.