AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.069 | 0.795 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.671 |
Model: | OLS | Adj. R-squared: | 0.619 |
Method: | Least Squares | F-statistic: | 12.93 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 7.81e-05 |
Time: | 03:32:17 | Log-Likelihood: | -100.31 |
No. Observations: | 23 | AIC: | 208.6 |
Df Residuals: | 19 | BIC: | 213.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -19.6852 | 148.189 | -0.133 | 0.896 | -329.848 290.478 |
C(dose)[T.1] | 311.3439 | 234.451 | 1.328 | 0.200 | -179.368 802.056 |
expression | 15.4241 | 30.907 | 0.499 | 0.623 | -49.264 80.112 |
expression:C(dose)[T.1] | -53.1335 | 48.355 | -1.099 | 0.286 | -154.342 48.075 |
Omnibus: | 0.104 | Durbin-Watson: | 1.625 |
Prob(Omnibus): | 0.949 | Jarque-Bera (JB): | 0.267 |
Skew: | 0.131 | Prob(JB): | 0.875 |
Kurtosis: | 2.541 | Cond. No. | 339. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.59 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.74e-05 |
Time: | 03:32:17 | Log-Likelihood: | -101.02 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 84.3051 | 114.623 | 0.735 | 0.471 | -154.794 323.404 |
C(dose)[T.1] | 53.9129 | 9.024 | 5.974 | 0.000 | 35.088 72.738 |
expression | -6.2822 | 23.892 | -0.263 | 0.795 | -56.121 43.556 |
Omnibus: | 0.543 | Durbin-Watson: | 1.901 |
Prob(Omnibus): | 0.762 | Jarque-Bera (JB): | 0.605 |
Skew: | 0.089 | Prob(JB): | 0.739 |
Kurtosis: | 2.225 | Cond. No. | 133. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:32:17 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.026 |
Model: | OLS | Adj. R-squared: | -0.020 |
Method: | Least Squares | F-statistic: | 0.5643 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.461 |
Time: | 03:32:17 | Log-Likelihood: | -112.80 |
No. Observations: | 23 | AIC: | 229.6 |
Df Residuals: | 21 | BIC: | 231.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -57.3676 | 182.621 | -0.314 | 0.757 | -437.148 322.413 |
expression | 28.3549 | 37.745 | 0.751 | 0.461 | -50.140 106.850 |
Omnibus: | 3.050 | Durbin-Watson: | 2.323 |
Prob(Omnibus): | 0.218 | Jarque-Bera (JB): | 1.623 |
Skew: | 0.350 | Prob(JB): | 0.444 |
Kurtosis: | 1.904 | Cond. No. | 129. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.779 | 0.121 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.612 |
Model: | OLS | Adj. R-squared: | 0.506 |
Method: | Least Squares | F-statistic: | 5.786 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0126 |
Time: | 03:32:17 | Log-Likelihood: | -68.198 |
No. Observations: | 15 | AIC: | 144.4 |
Df Residuals: | 11 | BIC: | 147.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 87.7473 | 107.788 | 0.814 | 0.433 | -149.493 324.988 |
C(dose)[T.1] | 257.5072 | 151.928 | 1.695 | 0.118 | -76.885 591.899 |
expression | -4.0268 | 21.268 | -0.189 | 0.853 | -50.838 42.785 |
expression:C(dose)[T.1] | -37.3683 | 28.727 | -1.301 | 0.220 | -100.596 25.860 |
Omnibus: | 1.483 | Durbin-Watson: | 1.139 |
Prob(Omnibus): | 0.476 | Jarque-Bera (JB): | 0.951 |
Skew: | -0.596 | Prob(JB): | 0.622 |
Kurtosis: | 2.680 | Cond. No. | 165. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.552 |
Model: | OLS | Adj. R-squared: | 0.478 |
Method: | Least Squares | F-statistic: | 7.405 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00804 |
Time: | 03:32:17 | Log-Likelihood: | -69.271 |
No. Observations: | 15 | AIC: | 144.5 |
Df Residuals: | 12 | BIC: | 146.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 191.1005 | 74.910 | 2.551 | 0.025 | 27.886 354.315 |
C(dose)[T.1] | 60.8945 | 15.824 | 3.848 | 0.002 | 26.417 95.372 |
expression | -24.5098 | 14.703 | -1.667 | 0.121 | -56.546 7.526 |
Omnibus: | 1.491 | Durbin-Watson: | 1.274 |
Prob(Omnibus): | 0.475 | Jarque-Bera (JB): | 1.177 |
Skew: | -0.515 | Prob(JB): | 0.555 |
Kurtosis: | 2.094 | Cond. No. | 58.9 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:32:17 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.000 |
Model: | OLS | Adj. R-squared: | -0.077 |
Method: | Least Squares | F-statistic: | 0.0009482 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.976 |
Time: | 03:32:17 | Log-Likelihood: | -75.300 |
No. Observations: | 15 | AIC: | 154.6 |
Df Residuals: | 13 | BIC: | 156.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 90.5779 | 100.821 | 0.898 | 0.385 | -127.233 308.388 |
expression | 0.5827 | 18.925 | 0.031 | 0.976 | -40.302 41.467 |
Omnibus: | 0.614 | Durbin-Watson: | 1.608 |
Prob(Omnibus): | 0.736 | Jarque-Bera (JB): | 0.585 |
Skew: | 0.043 | Prob(JB): | 0.747 |
Kurtosis: | 2.037 | Cond. No. | 54.7 |