AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.001 | 0.974 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.689 |
Model: | OLS | Adj. R-squared: | 0.639 |
Method: | Least Squares | F-statistic: | 14.00 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 4.71e-05 |
Time: | 05:14:47 | Log-Likelihood: | -99.688 |
No. Observations: | 23 | AIC: | 207.4 |
Df Residuals: | 19 | BIC: | 211.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 182.1095 | 121.287 | 1.501 | 0.150 | -71.746 435.965 |
C(dose)[T.1] | -227.9168 | 181.315 | -1.257 | 0.224 | -607.413 151.579 |
expression | -17.0806 | 16.178 | -1.056 | 0.304 | -50.942 16.781 |
expression:C(dose)[T.1] | 37.8559 | 24.381 | 1.553 | 0.137 | -13.174 88.886 |
Omnibus: | 2.252 | Durbin-Watson: | 1.718 |
Prob(Omnibus): | 0.324 | Jarque-Bera (JB): | 1.920 |
Skew: | 0.654 | Prob(JB): | 0.383 |
Kurtosis: | 2.457 | Cond. No. | 410. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.50 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.83e-05 |
Time: | 05:14:47 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 57.2926 | 93.969 | 0.610 | 0.549 | -138.723 253.308 |
C(dose)[T.1] | 53.2932 | 8.871 | 6.008 | 0.000 | 34.789 71.797 |
expression | -0.4119 | 12.523 | -0.033 | 0.974 | -26.534 25.710 |
Omnibus: | 0.285 | Durbin-Watson: | 1.882 |
Prob(Omnibus): | 0.867 | Jarque-Bera (JB): | 0.462 |
Skew: | 0.051 | Prob(JB): | 0.794 |
Kurtosis: | 2.313 | Cond. No. | 163. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:14:47 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.016 |
Model: | OLS | Adj. R-squared: | -0.031 |
Method: | Least Squares | F-statistic: | 0.3363 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.568 |
Time: | 05:14:47 | Log-Likelihood: | -112.92 |
No. Observations: | 23 | AIC: | 229.8 |
Df Residuals: | 21 | BIC: | 232.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 166.9784 | 150.653 | 1.108 | 0.280 | -146.321 480.278 |
expression | -11.7332 | 20.234 | -0.580 | 0.568 | -53.812 30.346 |
Omnibus: | 4.818 | Durbin-Watson: | 2.305 |
Prob(Omnibus): | 0.090 | Jarque-Bera (JB): | 1.949 |
Skew: | 0.350 | Prob(JB): | 0.377 |
Kurtosis: | 1.757 | Cond. No. | 159. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.499 | 0.494 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.508 |
Model: | OLS | Adj. R-squared: | 0.373 |
Method: | Least Squares | F-statistic: | 3.781 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0437 |
Time: | 05:14:47 | Log-Likelihood: | -69.985 |
No. Observations: | 15 | AIC: | 148.0 |
Df Residuals: | 11 | BIC: | 150.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 95.8462 | 225.882 | 0.424 | 0.680 | -401.317 593.010 |
C(dose)[T.1] | 413.0662 | 411.688 | 1.003 | 0.337 | -493.053 1319.186 |
expression | -3.4261 | 27.198 | -0.126 | 0.902 | -63.289 56.437 |
expression:C(dose)[T.1] | -47.4614 | 52.262 | -0.908 | 0.383 | -162.489 67.566 |
Omnibus: | 0.835 | Durbin-Watson: | 0.738 |
Prob(Omnibus): | 0.659 | Jarque-Bera (JB): | 0.789 |
Skew: | -0.410 | Prob(JB): | 0.674 |
Kurtosis: | 2.231 | Cond. No. | 520. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.471 |
Model: | OLS | Adj. R-squared: | 0.383 |
Method: | Least Squares | F-statistic: | 5.337 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0220 |
Time: | 05:14:47 | Log-Likelihood: | -70.528 |
No. Observations: | 15 | AIC: | 147.1 |
Df Residuals: | 12 | BIC: | 149.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 202.4690 | 191.558 | 1.057 | 0.311 | -214.900 619.838 |
C(dose)[T.1] | 39.6629 | 20.496 | 1.935 | 0.077 | -4.995 84.321 |
expression | -16.2807 | 23.055 | -0.706 | 0.494 | -66.513 33.951 |
Omnibus: | 2.223 | Durbin-Watson: | 0.679 |
Prob(Omnibus): | 0.329 | Jarque-Bera (JB): | 1.717 |
Skew: | -0.738 | Prob(JB): | 0.424 |
Kurtosis: | 2.247 | Cond. No. | 203. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:14:47 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.306 |
Model: | OLS | Adj. R-squared: | 0.252 |
Method: | Least Squares | F-statistic: | 5.722 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0326 |
Time: | 05:14:47 | Log-Likelihood: | -72.565 |
No. Observations: | 15 | AIC: | 149.1 |
Df Residuals: | 13 | BIC: | 150.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 458.1776 | 152.622 | 3.002 | 0.010 | 128.457 787.898 |
expression | -45.6655 | 19.091 | -2.392 | 0.033 | -86.909 -4.422 |
Omnibus: | 1.052 | Durbin-Watson: | 1.297 |
Prob(Omnibus): | 0.591 | Jarque-Bera (JB): | 0.755 |
Skew: | -0.159 | Prob(JB): | 0.686 |
Kurtosis: | 1.948 | Cond. No. | 146. |