AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.374 | 0.255 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.691 |
Model: | OLS | Adj. R-squared: | 0.643 |
Method: | Least Squares | F-statistic: | 14.19 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 4.33e-05 |
Time: | 04:49:45 | Log-Likelihood: | -99.585 |
No. Observations: | 23 | AIC: | 207.2 |
Df Residuals: | 19 | BIC: | 211.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 45.8191 | 94.093 | 0.487 | 0.632 | -151.121 242.759 |
C(dose)[T.1] | -82.8959 | 130.173 | -0.637 | 0.532 | -355.351 189.559 |
expression | 1.5947 | 17.852 | 0.089 | 0.930 | -35.770 38.959 |
expression:C(dose)[T.1] | 28.4715 | 25.823 | 1.103 | 0.284 | -25.576 82.519 |
Omnibus: | 0.750 | Durbin-Watson: | 1.998 |
Prob(Omnibus): | 0.687 | Jarque-Bera (JB): | 0.762 |
Skew: | 0.359 | Prob(JB): | 0.683 |
Kurtosis: | 2.472 | Cond. No. | 209. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.672 |
Model: | OLS | Adj. R-squared: | 0.639 |
Method: | Least Squares | F-statistic: | 20.45 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.46e-05 |
Time: | 04:49:45 | Log-Likelihood: | -100.30 |
No. Observations: | 23 | AIC: | 206.6 |
Df Residuals: | 20 | BIC: | 210.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -25.7659 | 68.472 | -0.376 | 0.711 | -168.595 117.064 |
C(dose)[T.1] | 60.1858 | 10.300 | 5.843 | 0.000 | 38.700 81.672 |
expression | 15.2024 | 12.968 | 1.172 | 0.255 | -11.848 42.253 |
Omnibus: | 0.324 | Durbin-Watson: | 2.038 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.423 |
Skew: | 0.238 | Prob(JB): | 0.809 |
Kurtosis: | 2.536 | Cond. No. | 85.5 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:49:45 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.111 |
Model: | OLS | Adj. R-squared: | 0.069 |
Method: | Least Squares | F-statistic: | 2.623 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.120 |
Time: | 04:49:45 | Log-Likelihood: | -111.75 |
No. Observations: | 23 | AIC: | 227.5 |
Df Residuals: | 21 | BIC: | 229.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 219.8468 | 86.788 | 2.533 | 0.019 | 39.361 400.333 |
expression | -27.7750 | 17.149 | -1.620 | 0.120 | -63.439 7.889 |
Omnibus: | 3.060 | Durbin-Watson: | 2.230 |
Prob(Omnibus): | 0.217 | Jarque-Bera (JB): | 1.592 |
Skew: | 0.333 | Prob(JB): | 0.451 |
Kurtosis: | 1.896 | Cond. No. | 67.1 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.499 | 0.140 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.561 |
Model: | OLS | Adj. R-squared: | 0.441 |
Method: | Least Squares | F-statistic: | 4.679 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0242 |
Time: | 04:49:45 | Log-Likelihood: | -69.131 |
No. Observations: | 15 | AIC: | 146.3 |
Df Residuals: | 11 | BIC: | 149.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -34.1759 | 175.608 | -0.195 | 0.849 | -420.687 352.336 |
C(dose)[T.1] | -114.9041 | 244.072 | -0.471 | 0.647 | -652.104 422.295 |
expression | 24.1108 | 41.594 | 0.580 | 0.574 | -67.438 115.659 |
expression:C(dose)[T.1] | 37.0818 | 56.998 | 0.651 | 0.529 | -88.369 162.533 |
Omnibus: | 2.225 | Durbin-Watson: | 1.091 |
Prob(Omnibus): | 0.329 | Jarque-Bera (JB): | 1.631 |
Skew: | -0.764 | Prob(JB): | 0.442 |
Kurtosis: | 2.477 | Cond. No. | 203. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.544 |
Model: | OLS | Adj. R-squared: | 0.468 |
Method: | Least Squares | F-statistic: | 7.151 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00902 |
Time: | 04:49:45 | Log-Likelihood: | -69.414 |
No. Observations: | 15 | AIC: | 144.8 |
Df Residuals: | 12 | BIC: | 147.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -117.3936 | 117.393 | -1.000 | 0.337 | -373.170 138.383 |
C(dose)[T.1] | 43.5805 | 14.754 | 2.954 | 0.012 | 11.435 75.726 |
expression | 43.8584 | 27.747 | 1.581 | 0.140 | -16.596 104.313 |
Omnibus: | 2.496 | Durbin-Watson: | 1.155 |
Prob(Omnibus): | 0.287 | Jarque-Bera (JB): | 1.848 |
Skew: | -0.813 | Prob(JB): | 0.397 |
Kurtosis: | 2.440 | Cond. No. | 74.9 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:49:45 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.212 |
Model: | OLS | Adj. R-squared: | 0.151 |
Method: | Least Squares | F-statistic: | 3.498 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0841 |
Time: | 04:49:45 | Log-Likelihood: | -73.513 |
No. Observations: | 15 | AIC: | 151.0 |
Df Residuals: | 13 | BIC: | 152.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -178.6724 | 145.893 | -1.225 | 0.242 | -493.854 136.509 |
expression | 63.5957 | 34.003 | 1.870 | 0.084 | -9.864 137.055 |
Omnibus: | 0.354 | Durbin-Watson: | 1.944 |
Prob(Omnibus): | 0.838 | Jarque-Bera (JB): | 0.479 |
Skew: | -0.063 | Prob(JB): | 0.787 |
Kurtosis: | 2.133 | Cond. No. | 73.2 |