AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.932 0.061 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.709
Model: OLS Adj. R-squared: 0.663
Method: Least Squares F-statistic: 15.44
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.50e-05
Time: 23:03:01 Log-Likelihood: -98.906
No. Observations: 23 AIC: 205.8
Df Residuals: 19 BIC: 210.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -227.8659 203.434 -1.120 0.277 -653.658 197.926
C(dose)[T.1] -99.3790 368.965 -0.269 0.791 -871.631 672.873
expression 29.8028 21.486 1.387 0.181 -15.167 74.773
expression:C(dose)[T.1] 15.0742 38.349 0.393 0.699 -65.192 95.340
Omnibus: 0.791 Durbin-Watson: 2.084
Prob(Omnibus): 0.673 Jarque-Bera (JB): 0.731
Skew: 0.140 Prob(JB): 0.694
Kurtosis: 2.173 Cond. No. 1.05e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.707
Model: OLS Adj. R-squared: 0.677
Method: Least Squares F-statistic: 24.10
Date: Thu, 03 Apr 2025 Prob (F-statistic): 4.71e-06
Time: 23:03:01 Log-Likelihood: -98.999
No. Observations: 23 AIC: 204.0
Df Residuals: 20 BIC: 207.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -272.6502 164.936 -1.653 0.114 -616.702 71.401
C(dose)[T.1] 45.6085 8.914 5.116 0.000 27.013 64.204
expression 34.5345 17.417 1.983 0.061 -1.796 70.865
Omnibus: 0.867 Durbin-Watson: 2.058
Prob(Omnibus): 0.648 Jarque-Bera (JB): 0.730
Skew: 0.028 Prob(JB): 0.694
Kurtosis: 2.129 Cond. No. 399.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 23:03:01 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.323
Model: OLS Adj. R-squared: 0.291
Method: Least Squares F-statistic: 10.01
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00468
Time: 23:03:01 Log-Likelihood: -108.62
No. Observations: 23 AIC: 221.2
Df Residuals: 21 BIC: 223.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -623.7654 222.400 -2.805 0.011 -1086.272 -161.259
expression 73.4959 23.227 3.164 0.005 25.193 121.799
Omnibus: 0.146 Durbin-Watson: 2.662
Prob(Omnibus): 0.930 Jarque-Bera (JB): 0.194
Skew: 0.154 Prob(JB): 0.907
Kurtosis: 2.672 Cond. No. 363.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
5.311 0.040 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.621
Model: OLS Adj. R-squared: 0.517
Method: Least Squares F-statistic: 6.001
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0112
Time: 23:03:01 Log-Likelihood: -68.029
No. Observations: 15 AIC: 144.1
Df Residuals: 11 BIC: 146.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -388.4489 295.508 -1.315 0.215 -1038.858 261.960
C(dose)[T.1] -97.0906 476.085 -0.204 0.842 -1144.946 950.764
expression 47.7275 30.920 1.544 0.151 -20.328 115.783
expression:C(dose)[T.1] 14.0649 49.217 0.286 0.780 -94.262 122.392
Omnibus: 1.134 Durbin-Watson: 1.330
Prob(Omnibus): 0.567 Jarque-Bera (JB): 0.982
Skew: -0.488 Prob(JB): 0.612
Kurtosis: 2.214 Cond. No. 868.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.618
Model: OLS Adj. R-squared: 0.554
Method: Least Squares F-statistic: 9.703
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00311
Time: 23:03:01 Log-Likelihood: -68.085
No. Observations: 15 AIC: 142.2
Df Residuals: 12 BIC: 144.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -441.4723 221.021 -1.997 0.069 -923.035 40.091
C(dose)[T.1] 38.8985 13.845 2.810 0.016 8.732 69.065
expression 53.2787 23.118 2.305 0.040 2.909 103.648
Omnibus: 1.455 Durbin-Watson: 1.386
Prob(Omnibus): 0.483 Jarque-Bera (JB): 1.144
Skew: -0.496 Prob(JB): 0.564
Kurtosis: 2.080 Cond. No. 331.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 23:03:01 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.367
Model: OLS Adj. R-squared: 0.318
Method: Least Squares F-statistic: 7.523
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0168
Time: 23:03:02 Log-Likelihood: -71.876
No. Observations: 15 AIC: 147.8
Df Residuals: 13 BIC: 149.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -623.1027 261.453 -2.383 0.033 -1187.938 -58.268
expression 74.2400 27.067 2.743 0.017 15.765 132.715
Omnibus: 0.996 Durbin-Watson: 1.892
Prob(Omnibus): 0.608 Jarque-Bera (JB): 0.801
Skew: 0.279 Prob(JB): 0.670
Kurtosis: 2.016 Cond. No. 316.