AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.662 | 0.425 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.664 |
Model: | OLS | Adj. R-squared: | 0.611 |
Method: | Least Squares | F-statistic: | 12.54 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 9.41e-05 |
Time: | 04:30:26 | Log-Likelihood: | -100.55 |
No. Observations: | 23 | AIC: | 209.1 |
Df Residuals: | 19 | BIC: | 213.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 80.8918 | 113.900 | 0.710 | 0.486 | -157.504 319.287 |
C(dose)[T.1] | 126.9337 | 159.121 | 0.798 | 0.435 | -206.111 459.978 |
expression | -3.6611 | 15.605 | -0.235 | 0.817 | -36.324 29.001 |
expression:C(dose)[T.1] | -10.8702 | 22.404 | -0.485 | 0.633 | -57.762 36.022 |
Omnibus: | 0.008 | Durbin-Watson: | 1.996 |
Prob(Omnibus): | 0.996 | Jarque-Bera (JB): | 0.125 |
Skew: | 0.025 | Prob(JB): | 0.939 |
Kurtosis: | 2.642 | Cond. No. | 338. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.660 |
Model: | OLS | Adj. R-squared: | 0.626 |
Method: | Least Squares | F-statistic: | 19.44 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.05e-05 |
Time: | 04:30:26 | Log-Likelihood: | -100.69 |
No. Observations: | 23 | AIC: | 207.4 |
Df Residuals: | 20 | BIC: | 210.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 119.3307 | 80.254 | 1.487 | 0.153 | -48.077 286.739 |
C(dose)[T.1] | 49.8758 | 9.620 | 5.185 | 0.000 | 29.809 69.942 |
expression | -8.9352 | 10.981 | -0.814 | 0.425 | -31.841 13.971 |
Omnibus: | 0.045 | Durbin-Watson: | 2.116 |
Prob(Omnibus): | 0.978 | Jarque-Bera (JB): | 0.260 |
Skew: | -0.035 | Prob(JB): | 0.878 |
Kurtosis: | 2.484 | Cond. No. | 136. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:30:26 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.204 |
Model: | OLS | Adj. R-squared: | 0.166 |
Method: | Least Squares | F-statistic: | 5.373 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0306 |
Time: | 04:30:26 | Log-Likelihood: | -110.48 |
No. Observations: | 23 | AIC: | 225.0 |
Df Residuals: | 21 | BIC: | 227.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 322.0044 | 104.725 | 3.075 | 0.006 | 104.217 539.792 |
expression | -34.1102 | 14.716 | -2.318 | 0.031 | -64.713 -3.507 |
Omnibus: | 0.012 | Durbin-Watson: | 2.686 |
Prob(Omnibus): | 0.994 | Jarque-Bera (JB): | 0.120 |
Skew: | -0.030 | Prob(JB): | 0.942 |
Kurtosis: | 2.650 | Cond. No. | 118. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.566 | 0.467 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.481 |
Model: | OLS | Adj. R-squared: | 0.340 |
Method: | Least Squares | F-statistic: | 3.404 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0570 |
Time: | 04:30:26 | Log-Likelihood: | -70.375 |
No. Observations: | 15 | AIC: | 148.8 |
Df Residuals: | 11 | BIC: | 151.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 188.6518 | 151.306 | 1.247 | 0.238 | -144.371 521.675 |
C(dose)[T.1] | -39.4168 | 213.864 | -0.184 | 0.857 | -510.128 431.295 |
expression | -17.7052 | 22.033 | -0.804 | 0.439 | -66.201 30.790 |
expression:C(dose)[T.1] | 12.8381 | 31.491 | 0.408 | 0.691 | -56.474 82.150 |
Omnibus: | 1.946 | Durbin-Watson: | 0.980 |
Prob(Omnibus): | 0.378 | Jarque-Bera (JB): | 1.459 |
Skew: | -0.711 | Prob(JB): | 0.482 |
Kurtosis: | 2.440 | Cond. No. | 247. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.474 |
Model: | OLS | Adj. R-squared: | 0.386 |
Method: | Least Squares | F-statistic: | 5.398 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0213 |
Time: | 04:30:26 | Log-Likelihood: | -70.488 |
No. Observations: | 15 | AIC: | 147.0 |
Df Residuals: | 12 | BIC: | 149.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 145.6220 | 104.576 | 1.392 | 0.189 | -82.230 373.474 |
C(dose)[T.1] | 47.5217 | 15.542 | 3.058 | 0.010 | 13.659 81.384 |
expression | -11.4205 | 15.185 | -0.752 | 0.467 | -44.507 21.666 |
Omnibus: | 2.213 | Durbin-Watson: | 0.860 |
Prob(Omnibus): | 0.331 | Jarque-Bera (JB): | 1.691 |
Skew: | -0.755 | Prob(JB): | 0.429 |
Kurtosis: | 2.347 | Cond. No. | 94.8 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:30:27 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.063 |
Model: | OLS | Adj. R-squared: | -0.009 |
Method: | Least Squares | F-statistic: | 0.8806 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.365 |
Time: | 04:30:27 | Log-Likelihood: | -74.808 |
No. Observations: | 15 | AIC: | 153.6 |
Df Residuals: | 13 | BIC: | 155.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 215.9977 | 130.729 | 1.652 | 0.122 | -66.426 498.421 |
expression | -18.0735 | 19.260 | -0.938 | 0.365 | -59.681 23.534 |
Omnibus: | 3.329 | Durbin-Watson: | 1.576 |
Prob(Omnibus): | 0.189 | Jarque-Bera (JB): | 1.273 |
Skew: | 0.232 | Prob(JB): | 0.529 |
Kurtosis: | 1.650 | Cond. No. | 92.2 |