AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.623 0.439 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.663
Model: OLS Adj. R-squared: 0.610
Method: Least Squares F-statistic: 12.48
Date: Tue, 03 Dec 2024 Prob (F-statistic): 9.70e-05
Time: 11:42:49 Log-Likelihood: -100.58
No. Observations: 23 AIC: 209.2
Df Residuals: 19 BIC: 213.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 28.4489 47.903 0.594 0.560 -71.814 128.712
C(dose)[T.1] -12.3080 136.245 -0.090 0.929 -297.473 272.857
expression 4.8805 9.002 0.542 0.594 -13.961 23.722
expression:C(dose)[T.1] 10.9007 23.765 0.459 0.652 -38.840 60.641
Omnibus: 0.364 Durbin-Watson: 1.754
Prob(Omnibus): 0.834 Jarque-Bera (JB): 0.507
Skew: -0.038 Prob(JB): 0.776
Kurtosis: 2.276 Cond. No. 206.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.660
Model: OLS Adj. R-squared: 0.626
Method: Least Squares F-statistic: 19.38
Date: Tue, 03 Dec 2024 Prob (F-statistic): 2.09e-05
Time: 11:42:49 Log-Likelihood: -100.71
No. Observations: 23 AIC: 207.4
Df Residuals: 20 BIC: 210.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 20.1931 43.508 0.464 0.648 -70.564 110.950
C(dose)[T.1] 50.0248 9.602 5.210 0.000 29.995 70.054
expression 6.4447 8.165 0.789 0.439 -10.588 23.477
Omnibus: 0.409 Durbin-Watson: 1.686
Prob(Omnibus): 0.815 Jarque-Bera (JB): 0.531
Skew: -0.027 Prob(JB): 0.767
Kurtosis: 2.257 Cond. No. 58.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 03 Dec 2024 Prob (F-statistic): 3.51e-06
Time: 11:42:49 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.198
Model: OLS Adj. R-squared: 0.160
Method: Least Squares F-statistic: 5.177
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0335
Time: 11:42:49 Log-Likelihood: -110.57
No. Observations: 23 AIC: 225.1
Df Residuals: 21 BIC: 227.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -58.5823 61.125 -0.958 0.349 -185.698 68.534
expression 25.0369 11.004 2.275 0.033 2.154 47.920
Omnibus: 2.306 Durbin-Watson: 2.107
Prob(Omnibus): 0.316 Jarque-Bera (JB): 1.138
Skew: 0.033 Prob(JB): 0.566
Kurtosis: 1.912 Cond. No. 54.2

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.406 0.147 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.541
Model: OLS Adj. R-squared: 0.416
Method: Least Squares F-statistic: 4.320
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0305
Time: 11:42:49 Log-Likelihood: -69.462
No. Observations: 15 AIC: 146.9
Df Residuals: 11 BIC: 149.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 189.9839 128.645 1.477 0.168 -93.161 473.129
C(dose)[T.1] 38.2253 162.127 0.236 0.818 -318.613 395.064
expression -20.8199 21.775 -0.956 0.360 -68.746 27.107
expression:C(dose)[T.1] 0.8596 27.970 0.031 0.976 -60.702 62.421
Omnibus: 1.007 Durbin-Watson: 0.987
Prob(Omnibus): 0.604 Jarque-Bera (JB): 0.859
Skew: -0.498 Prob(JB): 0.651
Kurtosis: 2.381 Cond. No. 179.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.541
Model: OLS Adj. R-squared: 0.464
Method: Least Squares F-statistic: 7.068
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.00937
Time: 11:42:49 Log-Likelihood: -69.462
No. Observations: 15 AIC: 144.9
Df Residuals: 12 BIC: 147.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 186.9172 77.737 2.404 0.033 17.543 356.291
C(dose)[T.1] 43.1850 14.879 2.902 0.013 10.767 75.603
expression -20.2989 13.085 -1.551 0.147 -48.809 8.211
Omnibus: 1.001 Durbin-Watson: 0.986
Prob(Omnibus): 0.606 Jarque-Bera (JB): 0.855
Skew: -0.496 Prob(JB): 0.652
Kurtosis: 2.380 Cond. No. 64.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.00629
Time: 11:42:49 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.219
Model: OLS Adj. R-squared: 0.158
Method: Least Squares F-statistic: 3.635
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0789
Time: 11:42:49 Log-Likelihood: -73.451
No. Observations: 15 AIC: 150.9
Df Residuals: 13 BIC: 152.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 266.6155 91.158 2.925 0.012 69.681 463.550
expression -30.1909 15.836 -1.907 0.079 -64.402 4.020
Omnibus: 1.420 Durbin-Watson: 2.010
Prob(Omnibus): 0.492 Jarque-Bera (JB): 1.086
Skew: 0.449 Prob(JB): 0.581
Kurtosis: 2.035 Cond. No. 60.2