AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.464 0.504 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.662
Model: OLS Adj. R-squared: 0.609
Method: Least Squares F-statistic: 12.43
Date: Thu, 21 Nov 2024 Prob (F-statistic): 9.95e-05
Time: 04:31:04 Log-Likelihood: -100.62
No. Observations: 23 AIC: 209.2
Df Residuals: 19 BIC: 213.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -51.6497 126.898 -0.407 0.689 -317.251 213.951
C(dose)[T.1] 225.5898 308.892 0.730 0.474 -420.929 872.109
expression 11.8099 14.141 0.835 0.414 -17.787 41.407
expression:C(dose)[T.1] -19.3709 35.043 -0.553 0.587 -92.716 53.975
Omnibus: 0.320 Durbin-Watson: 1.992
Prob(Omnibus): 0.852 Jarque-Bera (JB): 0.482
Skew: 0.030 Prob(JB): 0.786
Kurtosis: 2.293 Cond. No. 723.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.657
Model: OLS Adj. R-squared: 0.623
Method: Least Squares F-statistic: 19.16
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.25e-05
Time: 04:31:04 Log-Likelihood: -100.80
No. Observations: 23 AIC: 207.6
Df Residuals: 20 BIC: 211.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -23.3761 114.100 -0.205 0.840 -261.384 214.632
C(dose)[T.1] 54.9153 8.974 6.119 0.000 36.195 73.635
expression 8.6556 12.712 0.681 0.504 -17.861 35.172
Omnibus: 0.248 Durbin-Watson: 1.900
Prob(Omnibus): 0.884 Jarque-Bera (JB): 0.438
Skew: 0.051 Prob(JB): 0.803
Kurtosis: 2.331 Cond. No. 237.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:31:04 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.015
Model: OLS Adj. R-squared: -0.032
Method: Least Squares F-statistic: 0.3169
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.579
Time: 04:31:05 Log-Likelihood: -112.93
No. Observations: 23 AIC: 229.9
Df Residuals: 21 BIC: 232.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 181.1996 180.428 1.004 0.327 -194.020 556.420
expression -11.4330 20.311 -0.563 0.579 -53.672 30.806
Omnibus: 2.634 Durbin-Watson: 2.466
Prob(Omnibus): 0.268 Jarque-Bera (JB): 1.315
Skew: 0.203 Prob(JB): 0.518
Kurtosis: 1.901 Cond. No. 227.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.233 0.638 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.559
Model: OLS Adj. R-squared: 0.439
Method: Least Squares F-statistic: 4.644
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0248
Time: 04:31:05 Log-Likelihood: -69.163
No. Observations: 15 AIC: 146.3
Df Residuals: 11 BIC: 149.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -288.4060 231.423 -1.246 0.239 -797.764 220.952
C(dose)[T.1] 516.4310 294.593 1.753 0.107 -131.965 1164.827
expression 40.5956 26.373 1.539 0.152 -17.452 98.643
expression:C(dose)[T.1] -53.9878 34.269 -1.575 0.143 -129.413 21.437
Omnibus: 0.697 Durbin-Watson: 1.425
Prob(Omnibus): 0.706 Jarque-Bera (JB): 0.635
Skew: -0.415 Prob(JB): 0.728
Kurtosis: 2.427 Cond. No. 481.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.459
Model: OLS Adj. R-squared: 0.369
Method: Least Squares F-statistic: 5.096
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0250
Time: 04:31:05 Log-Likelihood: -70.689
No. Observations: 15 AIC: 147.4
Df Residuals: 12 BIC: 149.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -8.1157 156.870 -0.052 0.960 -349.906 333.675
C(dose)[T.1] 53.0500 17.513 3.029 0.010 14.892 91.208
expression 8.6185 17.849 0.483 0.638 -30.272 47.509
Omnibus: 4.429 Durbin-Watson: 0.842
Prob(Omnibus): 0.109 Jarque-Bera (JB): 2.528
Skew: -1.001 Prob(JB): 0.283
Kurtosis: 3.189 Cond. No. 175.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:31:05 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.046
Model: OLS Adj. R-squared: -0.028
Method: Least Squares F-statistic: 0.6242
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.444
Time: 04:31:05 Log-Likelihood: -74.948
No. Observations: 15 AIC: 153.9
Df Residuals: 13 BIC: 155.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 230.2784 173.192 1.330 0.207 -143.880 604.437
expression -16.0213 20.278 -0.790 0.444 -59.829 27.786
Omnibus: 0.112 Durbin-Watson: 1.435
Prob(Omnibus): 0.946 Jarque-Bera (JB): 0.147
Skew: -0.136 Prob(JB): 0.929
Kurtosis: 2.598 Cond. No. 151.