AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.413 0.528 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.699
Model: OLS Adj. R-squared: 0.652
Method: Least Squares F-statistic: 14.74
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.38e-05
Time: 05:15:23 Log-Likelihood: -99.280
No. Observations: 23 AIC: 206.6
Df Residuals: 19 BIC: 211.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -80.0858 77.737 -1.030 0.316 -242.790 82.619
C(dose)[T.1] 210.1465 93.959 2.237 0.038 13.488 406.805
expression 28.7183 16.578 1.732 0.099 -5.980 63.417
expression:C(dose)[T.1] -33.8859 20.485 -1.654 0.115 -76.762 8.990
Omnibus: 0.353 Durbin-Watson: 1.968
Prob(Omnibus): 0.838 Jarque-Bera (JB): 0.502
Skew: -0.042 Prob(JB): 0.778
Kurtosis: 2.281 Cond. No. 149.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.622
Method: Least Squares F-statistic: 19.08
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.31e-05
Time: 05:15:23 Log-Likelihood: -100.83
No. Observations: 23 AIC: 207.7
Df Residuals: 20 BIC: 211.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 23.6902 47.854 0.495 0.626 -76.132 123.512
C(dose)[T.1] 55.4204 9.266 5.981 0.000 36.092 74.749
expression 6.5262 10.153 0.643 0.528 -14.652 27.704
Omnibus: 0.033 Durbin-Watson: 1.968
Prob(Omnibus): 0.984 Jarque-Bera (JB): 0.226
Skew: 0.059 Prob(JB): 0.893
Kurtosis: 2.529 Cond. No. 52.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:15:23 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.041
Model: OLS Adj. R-squared: -0.005
Method: Least Squares F-statistic: 0.9010
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.353
Time: 05:15:23 Log-Likelihood: -112.62
No. Observations: 23 AIC: 229.2
Df Residuals: 21 BIC: 231.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 146.2732 70.473 2.076 0.050 -0.284 292.830
expression -14.7131 15.501 -0.949 0.353 -46.948 17.522
Omnibus: 1.382 Durbin-Watson: 2.392
Prob(Omnibus): 0.501 Jarque-Bera (JB): 0.963
Skew: 0.175 Prob(JB): 0.618
Kurtosis: 2.060 Cond. No. 47.5

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.822 0.074 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.583
Model: OLS Adj. R-squared: 0.469
Method: Least Squares F-statistic: 5.125
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0185
Time: 05:15:23 Log-Likelihood: -68.741
No. Observations: 15 AIC: 145.5
Df Residuals: 11 BIC: 148.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 172.3100 62.322 2.765 0.018 35.140 309.480
C(dose)[T.1] 25.7205 120.785 0.213 0.835 -240.126 291.567
expression -19.0666 11.169 -1.707 0.116 -43.650 5.517
expression:C(dose)[T.1] 3.6533 22.475 0.163 0.874 -45.813 53.119
Omnibus: 2.003 Durbin-Watson: 1.010
Prob(Omnibus): 0.367 Jarque-Bera (JB): 1.111
Skew: -0.664 Prob(JB): 0.574
Kurtosis: 2.870 Cond. No. 114.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.582
Model: OLS Adj. R-squared: 0.512
Method: Least Squares F-statistic: 8.352
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00534
Time: 05:15:23 Log-Likelihood: -68.759
No. Observations: 15 AIC: 143.5
Df Residuals: 12 BIC: 145.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 167.3465 52.079 3.213 0.007 53.877 280.816
C(dose)[T.1] 45.2134 13.858 3.263 0.007 15.020 75.407
expression -18.1643 9.291 -1.955 0.074 -38.407 2.079
Omnibus: 1.643 Durbin-Watson: 0.950
Prob(Omnibus): 0.440 Jarque-Bera (JB): 0.929
Skew: -0.602 Prob(JB): 0.628
Kurtosis: 2.810 Cond. No. 43.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:15:23 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.211
Model: OLS Adj. R-squared: 0.150
Method: Least Squares F-statistic: 3.478
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0849
Time: 05:15:23 Log-Likelihood: -73.522
No. Observations: 15 AIC: 151.0
Df Residuals: 13 BIC: 152.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 215.4532 65.922 3.268 0.006 73.038 357.869
expression -22.6207 12.129 -1.865 0.085 -48.824 3.583
Omnibus: 2.611 Durbin-Watson: 1.694
Prob(Omnibus): 0.271 Jarque-Bera (JB): 1.590
Skew: 0.560 Prob(JB): 0.452
Kurtosis: 1.865 Cond. No. 41.0