AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.801 0.382 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.663
Model: OLS Adj. R-squared: 0.609
Method: Least Squares F-statistic: 12.44
Date: Thu, 21 Nov 2024 Prob (F-statistic): 9.92e-05
Time: 04:31:23 Log-Likelihood: -100.61
No. Observations: 23 AIC: 209.2
Df Residuals: 19 BIC: 213.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 122.0214 104.472 1.168 0.257 -96.641 340.684
C(dose)[T.1] 50.3418 152.954 0.329 0.746 -269.795 370.478
expression -10.3270 15.883 -0.650 0.523 -43.570 22.915
expression:C(dose)[T.1] 0.0695 23.744 0.003 0.998 -49.628 49.767
Omnibus: 0.972 Durbin-Watson: 1.988
Prob(Omnibus): 0.615 Jarque-Bera (JB): 0.835
Skew: 0.197 Prob(JB): 0.659
Kurtosis: 2.154 Cond. No. 291.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.663
Model: OLS Adj. R-squared: 0.629
Method: Least Squares F-statistic: 19.64
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.91e-05
Time: 04:31:23 Log-Likelihood: -100.61
No. Observations: 23 AIC: 207.2
Df Residuals: 20 BIC: 210.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 121.8171 75.798 1.607 0.124 -36.294 279.929
C(dose)[T.1] 50.7888 9.059 5.607 0.000 31.892 69.685
expression -10.2959 11.507 -0.895 0.382 -34.300 13.708
Omnibus: 0.977 Durbin-Watson: 1.987
Prob(Omnibus): 0.613 Jarque-Bera (JB): 0.838
Skew: 0.198 Prob(JB): 0.658
Kurtosis: 2.153 Cond. No. 117.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:31:23 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.132
Model: OLS Adj. R-squared: 0.091
Method: Least Squares F-statistic: 3.200
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0881
Time: 04:31:23 Log-Likelihood: -111.47
No. Observations: 23 AIC: 226.9
Df Residuals: 21 BIC: 229.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 276.9069 110.442 2.507 0.020 47.231 506.583
expression -30.5805 17.096 -1.789 0.088 -66.133 4.972
Omnibus: 0.621 Durbin-Watson: 2.446
Prob(Omnibus): 0.733 Jarque-Bera (JB): 0.569
Skew: 0.337 Prob(JB): 0.752
Kurtosis: 2.625 Cond. No. 109.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.135 0.720 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.509
Model: OLS Adj. R-squared: 0.376
Method: Least Squares F-statistic: 3.808
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0429
Time: 04:31:23 Log-Likelihood: -69.958
No. Observations: 15 AIC: 147.9
Df Residuals: 11 BIC: 150.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 245.9290 205.138 1.199 0.256 -205.577 697.435
C(dose)[T.1] -391.0558 395.090 -0.990 0.344 -1260.643 478.532
expression -23.0572 26.458 -0.871 0.402 -81.290 35.176
expression:C(dose)[T.1] 58.8395 53.184 1.106 0.292 -58.219 175.898
Omnibus: 0.440 Durbin-Watson: 1.361
Prob(Omnibus): 0.803 Jarque-Bera (JB): 0.542
Skew: -0.229 Prob(JB): 0.763
Kurtosis: 2.190 Cond. No. 468.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.455
Model: OLS Adj. R-squared: 0.364
Method: Least Squares F-statistic: 5.007
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0262
Time: 04:31:23 Log-Likelihood: -70.749
No. Observations: 15 AIC: 147.5
Df Residuals: 12 BIC: 149.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 133.2002 179.696 0.741 0.473 -258.325 524.725
C(dose)[T.1] 45.5729 18.509 2.462 0.030 5.244 85.902
expression -8.4958 23.165 -0.367 0.720 -58.967 41.976
Omnibus: 2.993 Durbin-Watson: 0.815
Prob(Omnibus): 0.224 Jarque-Bera (JB): 1.897
Skew: -0.865 Prob(JB): 0.387
Kurtosis: 2.793 Cond. No. 177.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:31:23 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.180
Model: OLS Adj. R-squared: 0.116
Method: Least Squares F-statistic: 2.844
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.116
Time: 04:31:23 Log-Likelihood: -73.816
No. Observations: 15 AIC: 151.6
Df Residuals: 13 BIC: 153.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 386.2630 173.744 2.223 0.045 10.912 761.614
expression -38.9393 23.090 -1.686 0.116 -88.822 10.943
Omnibus: 1.784 Durbin-Watson: 1.546
Prob(Omnibus): 0.410 Jarque-Bera (JB): 0.901
Skew: -0.027 Prob(JB): 0.637
Kurtosis: 1.801 Cond. No. 145.