AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.087 0.772 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.665
Model: OLS Adj. R-squared: 0.613
Method: Least Squares F-statistic: 12.59
Date: Thu, 21 Nov 2024 Prob (F-statistic): 9.19e-05
Time: 04:30:30 Log-Likelihood: -100.52
No. Observations: 23 AIC: 209.0
Df Residuals: 19 BIC: 213.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -3.5916 67.987 -0.053 0.958 -145.890 138.707
C(dose)[T.1] 141.8213 97.256 1.458 0.161 -61.739 345.381
expression 10.7681 12.615 0.854 0.404 -15.636 37.172
expression:C(dose)[T.1] -16.3902 17.893 -0.916 0.371 -53.841 21.060
Omnibus: 0.140 Durbin-Watson: 1.830
Prob(Omnibus): 0.932 Jarque-Bera (JB): 0.291
Skew: 0.154 Prob(JB): 0.865
Kurtosis: 2.543 Cond. No. 161.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.651
Model: OLS Adj. R-squared: 0.616
Method: Least Squares F-statistic: 18.62
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.71e-05
Time: 04:30:30 Log-Likelihood: -101.01
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 40.1402 48.209 0.833 0.415 -60.422 140.703
C(dose)[T.1] 53.1010 8.788 6.043 0.000 34.770 71.432
expression 2.6209 8.910 0.294 0.772 -15.966 21.207
Omnibus: 0.568 Durbin-Watson: 1.886
Prob(Omnibus): 0.753 Jarque-Bera (JB): 0.618
Skew: 0.092 Prob(JB): 0.734
Kurtosis: 2.218 Cond. No. 62.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:30:30 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.013
Model: OLS Adj. R-squared: -0.034
Method: Least Squares F-statistic: 0.2683
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.610
Time: 04:30:30 Log-Likelihood: -112.96
No. Observations: 23 AIC: 229.9
Df Residuals: 21 BIC: 232.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 38.9226 79.085 0.492 0.628 -125.543 203.389
expression 7.5395 14.556 0.518 0.610 -22.731 37.810
Omnibus: 4.350 Durbin-Watson: 2.532
Prob(Omnibus): 0.114 Jarque-Bera (JB): 1.914
Skew: 0.370 Prob(JB): 0.384
Kurtosis: 1.795 Cond. No. 61.9

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.099 0.315 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.504
Model: OLS Adj. R-squared: 0.368
Method: Least Squares F-statistic: 3.720
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0456
Time: 04:30:30 Log-Likelihood: -70.047
No. Observations: 15 AIC: 148.1
Df Residuals: 11 BIC: 150.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -191.9910 260.798 -0.736 0.477 -766.004 382.023
C(dose)[T.1] 199.2076 348.789 0.571 0.579 -568.471 966.887
expression 41.6418 41.823 0.996 0.341 -50.410 133.694
expression:C(dose)[T.1] -24.2740 55.659 -0.436 0.671 -146.779 98.231
Omnibus: 1.579 Durbin-Watson: 0.588
Prob(Omnibus): 0.454 Jarque-Bera (JB): 1.268
Skew: -0.580 Prob(JB): 0.530
Kurtosis: 2.173 Cond. No. 394.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.495
Model: OLS Adj. R-squared: 0.411
Method: Least Squares F-statistic: 5.882
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0166
Time: 04:30:30 Log-Likelihood: -70.176
No. Observations: 15 AIC: 146.4
Df Residuals: 12 BIC: 148.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -106.6077 166.381 -0.641 0.534 -469.120 255.904
C(dose)[T.1] 47.2493 15.179 3.113 0.009 14.177 80.322
expression 27.9361 26.649 1.048 0.315 -30.127 85.999
Omnibus: 1.424 Durbin-Watson: 0.651
Prob(Omnibus): 0.491 Jarque-Bera (JB): 1.091
Skew: -0.452 Prob(JB): 0.580
Kurtosis: 2.037 Cond. No. 143.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:30:30 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.087
Model: OLS Adj. R-squared: 0.017
Method: Least Squares F-statistic: 1.243
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.285
Time: 04:30:30 Log-Likelihood: -74.615
No. Observations: 15 AIC: 153.2
Df Residuals: 13 BIC: 154.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -145.0208 214.318 -0.677 0.510 -608.027 317.985
expression 38.0866 34.163 1.115 0.285 -35.718 111.891
Omnibus: 1.027 Durbin-Watson: 1.438
Prob(Omnibus): 0.599 Jarque-Bera (JB): 0.897
Skew: 0.413 Prob(JB): 0.639
Kurtosis: 2.133 Cond. No. 142.