AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.310 0.584 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.658
Model: OLS Adj. R-squared: 0.604
Method: Least Squares F-statistic: 12.17
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000113
Time: 04:49:26 Log-Likelihood: -100.77
No. Observations: 23 AIC: 209.5
Df Residuals: 19 BIC: 214.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 71.9358 166.011 0.433 0.670 -275.530 419.401
C(dose)[T.1] -26.0399 188.770 -0.138 0.892 -421.140 369.061
expression -2.3186 21.698 -0.107 0.916 -47.734 43.096
expression:C(dose)[T.1] 10.7938 24.953 0.433 0.670 -41.433 63.020
Omnibus: 0.082 Durbin-Watson: 1.923
Prob(Omnibus): 0.960 Jarque-Bera (JB): 0.142
Skew: -0.108 Prob(JB): 0.931
Kurtosis: 2.681 Cond. No. 469.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.654
Model: OLS Adj. R-squared: 0.620
Method: Least Squares F-statistic: 18.94
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.43e-05
Time: 04:49:26 Log-Likelihood: -100.89
No. Observations: 23 AIC: 207.8
Df Residuals: 20 BIC: 211.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 9.5327 80.463 0.118 0.907 -158.309 177.375
C(dose)[T.1] 55.5079 9.536 5.821 0.000 35.616 75.400
expression 5.8433 10.494 0.557 0.584 -16.048 27.734
Omnibus: 0.051 Durbin-Watson: 1.898
Prob(Omnibus): 0.975 Jarque-Bera (JB): 0.190
Skew: -0.095 Prob(JB): 0.909
Kurtosis: 2.597 Cond. No. 141.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:49:26 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.069
Model: OLS Adj. R-squared: 0.025
Method: Least Squares F-statistic: 1.555
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.226
Time: 04:49:26 Log-Likelihood: -112.28
No. Observations: 23 AIC: 228.6
Df Residuals: 21 BIC: 230.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 222.5876 114.780 1.939 0.066 -16.110 461.285
expression -19.1310 15.341 -1.247 0.226 -51.035 12.773
Omnibus: 3.146 Durbin-Watson: 2.400
Prob(Omnibus): 0.207 Jarque-Bera (JB): 1.898
Skew: 0.468 Prob(JB): 0.387
Kurtosis: 1.950 Cond. No. 126.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
7.745 0.017 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.765
Model: OLS Adj. R-squared: 0.701
Method: Least Squares F-statistic: 11.93
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000881
Time: 04:49:26 Log-Likelihood: -64.444
No. Observations: 15 AIC: 136.9
Df Residuals: 11 BIC: 139.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 288.2330 120.584 2.390 0.036 22.831 553.636
C(dose)[T.1] 598.4693 257.943 2.320 0.041 30.741 1166.197
expression -25.5541 13.926 -1.835 0.094 -56.205 5.096
expression:C(dose)[T.1] -65.6225 30.365 -2.161 0.054 -132.456 1.211
Omnibus: 5.538 Durbin-Watson: 0.741
Prob(Omnibus): 0.063 Jarque-Bera (JB): 2.802
Skew: 0.985 Prob(JB): 0.246
Kurtosis: 3.774 Cond. No. 496.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.665
Model: OLS Adj. R-squared: 0.609
Method: Least Squares F-statistic: 11.91
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00141
Time: 04:49:26 Log-Likelihood: -67.098
No. Observations: 15 AIC: 140.2
Df Residuals: 12 BIC: 142.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 407.4911 122.520 3.326 0.006 140.543 674.439
C(dose)[T.1] 41.5347 12.575 3.303 0.006 14.135 68.934
expression -39.3560 14.141 -2.783 0.017 -70.168 -8.544
Omnibus: 0.064 Durbin-Watson: 1.298
Prob(Omnibus): 0.969 Jarque-Bera (JB): 0.219
Skew: -0.124 Prob(JB): 0.896
Kurtosis: 2.463 Cond. No. 174.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:49:26 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.360
Model: OLS Adj. R-squared: 0.311
Method: Least Squares F-statistic: 7.327
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0180
Time: 04:49:26 Log-Likelihood: -71.948
No. Observations: 15 AIC: 147.9
Df Residuals: 13 BIC: 149.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 516.9345 156.583 3.301 0.006 178.658 855.211
expression -49.5813 18.317 -2.707 0.018 -89.153 -10.009
Omnibus: 4.171 Durbin-Watson: 2.483
Prob(Omnibus): 0.124 Jarque-Bera (JB): 1.402
Skew: 0.240 Prob(JB): 0.496
Kurtosis: 1.581 Cond. No. 167.