AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
4.175 0.054 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.731
Model: OLS Adj. R-squared: 0.688
Method: Least Squares F-statistic: 17.18
Date: Tue, 03 Dec 2024 Prob (F-statistic): 1.22e-05
Time: 11:49:51 Log-Likelihood: -98.018
No. Observations: 23 AIC: 204.0
Df Residuals: 19 BIC: 208.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 36.0062 78.290 0.460 0.651 -127.856 199.868
C(dose)[T.1] 153.2181 85.623 1.789 0.089 -25.993 332.429
expression 3.2251 13.838 0.233 0.818 -25.738 32.189
expression:C(dose)[T.1] -18.5753 15.258 -1.217 0.238 -50.510 13.360
Omnibus: 0.525 Durbin-Watson: 1.999
Prob(Omnibus): 0.769 Jarque-Bera (JB): 0.116
Skew: -0.174 Prob(JB): 0.944
Kurtosis: 3.021 Cond. No. 185.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.710
Model: OLS Adj. R-squared: 0.681
Method: Least Squares F-statistic: 24.44
Date: Tue, 03 Dec 2024 Prob (F-statistic): 4.26e-06
Time: 11:49:51 Log-Likelihood: -98.882
No. Observations: 23 AIC: 203.8
Df Residuals: 20 BIC: 207.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 122.2391 33.747 3.622 0.002 51.844 192.634
C(dose)[T.1] 49.4463 8.201 6.029 0.000 32.340 66.553
expression -12.0540 5.899 -2.043 0.054 -24.359 0.251
Omnibus: 0.360 Durbin-Watson: 2.001
Prob(Omnibus): 0.835 Jarque-Bera (JB): 0.024
Skew: 0.080 Prob(JB): 0.988
Kurtosis: 2.998 Cond. No. 48.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 03 Dec 2024 Prob (F-statistic): 3.51e-06
Time: 11:49:51 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.182
Model: OLS Adj. R-squared: 0.143
Method: Least Squares F-statistic: 4.670
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0424
Time: 11:49:51 Log-Likelihood: -110.80
No. Observations: 23 AIC: 225.6
Df Residuals: 21 BIC: 227.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 191.2214 52.009 3.677 0.001 83.062 299.381
expression -20.3124 9.399 -2.161 0.042 -39.860 -0.765
Omnibus: 5.445 Durbin-Watson: 2.602
Prob(Omnibus): 0.066 Jarque-Bera (JB): 1.669
Skew: 0.029 Prob(JB): 0.434
Kurtosis: 1.682 Cond. No. 45.5

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.487 0.246 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.523
Model: OLS Adj. R-squared: 0.393
Method: Least Squares F-statistic: 4.024
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0370
Time: 11:49:51 Log-Likelihood: -69.744
No. Observations: 15 AIC: 147.5
Df Residuals: 11 BIC: 150.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 198.3705 118.471 1.674 0.122 -62.382 459.123
C(dose)[T.1] -37.6777 134.685 -0.280 0.785 -334.117 258.762
expression -22.8325 20.566 -1.110 0.291 -68.098 22.433
expression:C(dose)[T.1] 13.7035 24.381 0.562 0.585 -39.959 67.366
Omnibus: 1.620 Durbin-Watson: 1.333
Prob(Omnibus): 0.445 Jarque-Bera (JB): 0.942
Skew: -0.604 Prob(JB): 0.624
Kurtosis: 2.782 Cond. No. 140.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.510
Model: OLS Adj. R-squared: 0.428
Method: Least Squares F-statistic: 6.234
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0139
Time: 11:49:51 Log-Likelihood: -69.957
No. Observations: 15 AIC: 145.9
Df Residuals: 12 BIC: 148.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 142.4524 62.462 2.281 0.042 6.359 278.546
C(dose)[T.1] 37.3223 17.754 2.102 0.057 -1.360 76.005
expression -13.0820 10.726 -1.220 0.246 -36.453 10.289
Omnibus: 1.272 Durbin-Watson: 1.207
Prob(Omnibus): 0.529 Jarque-Bera (JB): 0.687
Skew: -0.515 Prob(JB): 0.709
Kurtosis: 2.807 Cond. No. 47.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.00629
Time: 11:49:51 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.329
Model: OLS Adj. R-squared: 0.277
Method: Least Squares F-statistic: 6.373
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0254
Time: 11:49:51 Log-Likelihood: -72.308
No. Observations: 15 AIC: 148.6
Df Residuals: 13 BIC: 150.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 227.2853 53.581 4.242 0.001 111.531 343.040
expression -25.4473 10.080 -2.524 0.025 -47.225 -3.670
Omnibus: 2.247 Durbin-Watson: 1.610
Prob(Omnibus): 0.325 Jarque-Bera (JB): 1.245
Skew: 0.704 Prob(JB): 0.537
Kurtosis: 2.902 Cond. No. 35.4