AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.228 | 0.281 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.669 |
Model: | OLS | Adj. R-squared: | 0.617 |
Method: | Least Squares | F-statistic: | 12.82 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 8.21e-05 |
Time: | 03:53:08 | Log-Likelihood: | -100.38 |
No. Observations: | 23 | AIC: | 208.8 |
Df Residuals: | 19 | BIC: | 213.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -47.0757 | 135.633 | -0.347 | 0.732 | -330.958 236.807 |
C(dose)[T.1] | 44.9288 | 195.409 | 0.230 | 0.821 | -364.067 453.924 |
expression | 10.9270 | 14.618 | 0.747 | 0.464 | -19.669 41.523 |
expression:C(dose)[T.1] | 0.7127 | 20.882 | 0.034 | 0.973 | -42.994 44.419 |
Omnibus: | 2.691 | Durbin-Watson: | 2.149 |
Prob(Omnibus): | 0.260 | Jarque-Bera (JB): | 1.314 |
Skew: | 0.190 | Prob(JB): | 0.518 |
Kurtosis: | 1.892 | Cond. No. | 547. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.669 |
Model: | OLS | Adj. R-squared: | 0.636 |
Method: | Least Squares | F-statistic: | 20.24 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.56e-05 |
Time: | 03:53:08 | Log-Likelihood: | -100.38 |
No. Observations: | 23 | AIC: | 206.8 |
Df Residuals: | 20 | BIC: | 210.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -50.3130 | 94.496 | -0.532 | 0.600 | -247.429 146.803 |
C(dose)[T.1] | 51.5911 | 8.657 | 5.960 | 0.000 | 33.533 69.649 |
expression | 11.2763 | 10.175 | 1.108 | 0.281 | -9.948 32.501 |
Omnibus: | 2.672 | Durbin-Watson: | 2.150 |
Prob(Omnibus): | 0.263 | Jarque-Bera (JB): | 1.307 |
Skew: | 0.186 | Prob(JB): | 0.520 |
Kurtosis: | 1.894 | Cond. No. | 211. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:53:08 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.082 |
Model: | OLS | Adj. R-squared: | 0.039 |
Method: | Least Squares | F-statistic: | 1.881 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.185 |
Time: | 03:53:08 | Log-Likelihood: | -112.12 |
No. Observations: | 23 | AIC: | 228.2 |
Df Residuals: | 21 | BIC: | 230.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -128.7447 | 152.146 | -0.846 | 0.407 | -445.149 187.660 |
expression | 22.3117 | 16.267 | 1.372 | 0.185 | -11.518 56.142 |
Omnibus: | 2.220 | Durbin-Watson: | 2.711 |
Prob(Omnibus): | 0.330 | Jarque-Bera (JB): | 1.339 |
Skew: | 0.300 | Prob(JB): | 0.512 |
Kurtosis: | 1.982 | Cond. No. | 208. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.009 | 0.925 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.452 |
Model: | OLS | Adj. R-squared: | 0.302 |
Method: | Least Squares | F-statistic: | 3.021 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0756 |
Time: | 03:53:08 | Log-Likelihood: | -70.793 |
No. Observations: | 15 | AIC: | 149.6 |
Df Residuals: | 11 | BIC: | 152.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 115.2603 | 212.417 | 0.543 | 0.598 | -352.266 582.786 |
C(dose)[T.1] | -16.4217 | 287.859 | -0.057 | 0.956 | -649.995 617.152 |
expression | -6.2967 | 27.918 | -0.226 | 0.826 | -67.745 55.151 |
expression:C(dose)[T.1] | 8.7934 | 38.996 | 0.225 | 0.826 | -77.036 94.623 |
Omnibus: | 3.095 | Durbin-Watson: | 0.768 |
Prob(Omnibus): | 0.213 | Jarque-Bera (JB): | 2.091 |
Skew: | -0.901 | Prob(JB): | 0.352 |
Kurtosis: | 2.681 | Cond. No. | 352. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.357 |
Method: | Least Squares | F-statistic: | 4.893 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0279 |
Time: | 03:53:08 | Log-Likelihood: | -70.827 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 81.0222 | 142.554 | 0.568 | 0.580 | -229.577 391.621 |
C(dose)[T.1] | 48.3507 | 18.047 | 2.679 | 0.020 | 9.030 87.671 |
expression | -1.7895 | 18.705 | -0.096 | 0.925 | -42.544 38.965 |
Omnibus: | 2.704 | Durbin-Watson: | 0.808 |
Prob(Omnibus): | 0.259 | Jarque-Bera (JB): | 1.857 |
Skew: | -0.841 | Prob(JB): | 0.395 |
Kurtosis: | 2.625 | Cond. No. | 137. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:53:08 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.120 |
Model: | OLS | Adj. R-squared: | 0.052 |
Method: | Least Squares | F-statistic: | 1.768 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.206 |
Time: | 03:53:08 | Log-Likelihood: | -74.344 |
No. Observations: | 15 | AIC: | 152.7 |
Df Residuals: | 13 | BIC: | 154.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 287.0899 | 145.781 | 1.969 | 0.071 | -27.851 602.030 |
expression | -26.3364 | 19.807 | -1.330 | 0.206 | -69.127 16.454 |
Omnibus: | 0.199 | Durbin-Watson: | 1.331 |
Prob(Omnibus): | 0.905 | Jarque-Bera (JB): | 0.116 |
Skew: | 0.152 | Prob(JB): | 0.944 |
Kurtosis: | 2.696 | Cond. No. | 115. |