AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.450 0.510 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.734
Model: OLS Adj. R-squared: 0.692
Method: Least Squares F-statistic: 17.49
Date: Tue, 03 Dec 2024 Prob (F-statistic): 1.08e-05
Time: 11:49:20 Log-Likelihood: -97.868
No. Observations: 23 AIC: 203.7
Df Residuals: 19 BIC: 208.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -31.7357 57.635 -0.551 0.588 -152.368 88.896
C(dose)[T.1] 223.5674 72.136 3.099 0.006 72.585 374.550
expression 22.5871 15.080 1.498 0.151 -8.976 54.150
expression:C(dose)[T.1] -43.3432 18.428 -2.352 0.030 -81.913 -4.773
Omnibus: 1.389 Durbin-Watson: 1.758
Prob(Omnibus): 0.499 Jarque-Bera (JB): 0.346
Skew: -0.179 Prob(JB): 0.841
Kurtosis: 3.482 Cond. No. 109.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.657
Model: OLS Adj. R-squared: 0.622
Method: Least Squares F-statistic: 19.14
Date: Tue, 03 Dec 2024 Prob (F-statistic): 2.27e-05
Time: 11:49:20 Log-Likelihood: -100.81
No. Observations: 23 AIC: 207.6
Df Residuals: 20 BIC: 211.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 78.7074 37.014 2.126 0.046 1.497 155.917
C(dose)[T.1] 54.9839 9.014 6.100 0.000 36.182 73.786
expression -6.4386 9.599 -0.671 0.510 -26.462 13.585
Omnibus: 0.427 Durbin-Watson: 1.732
Prob(Omnibus): 0.808 Jarque-Bera (JB): 0.540
Skew: -0.021 Prob(JB): 0.763
Kurtosis: 2.250 Cond. No. 36.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 03 Dec 2024 Prob (F-statistic): 3.51e-06
Time: 11:49:20 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.018
Model: OLS Adj. R-squared: -0.029
Method: Least Squares F-statistic: 0.3892
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.539
Time: 11:49:20 Log-Likelihood: -112.89
No. Observations: 23 AIC: 229.8
Df Residuals: 21 BIC: 232.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 42.3648 60.297 0.703 0.490 -83.030 167.759
expression 9.5109 15.245 0.624 0.539 -22.192 41.214
Omnibus: 2.756 Durbin-Watson: 2.512
Prob(Omnibus): 0.252 Jarque-Bera (JB): 1.844
Skew: 0.489 Prob(JB): 0.398
Kurtosis: 2.016 Cond. No. 35.5

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.026 0.874 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.505
Model: OLS Adj. R-squared: 0.370
Method: Least Squares F-statistic: 3.739
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0450
Time: 11:49:20 Log-Likelihood: -70.028
No. Observations: 15 AIC: 148.1
Df Residuals: 11 BIC: 150.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 58.0528 74.331 0.781 0.451 -105.549 221.655
C(dose)[T.1] 335.3364 260.551 1.287 0.225 -238.133 908.806
expression 2.6132 20.473 0.128 0.901 -42.448 47.674
expression:C(dose)[T.1] -87.4640 79.184 -1.105 0.293 -261.746 86.818
Omnibus: 1.113 Durbin-Watson: 1.034
Prob(Omnibus): 0.573 Jarque-Bera (JB): 0.968
Skew: -0.487 Prob(JB): 0.616
Kurtosis: 2.224 Cond. No. 143.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.450
Model: OLS Adj. R-squared: 0.358
Method: Least Squares F-statistic: 4.909
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0277
Time: 11:49:20 Log-Likelihood: -70.817
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 79.0307 72.520 1.090 0.297 -78.977 237.039
C(dose)[T.1] 48.1418 17.017 2.829 0.015 11.066 85.218
expression -3.2337 19.957 -0.162 0.874 -46.717 40.250
Omnibus: 2.657 Durbin-Watson: 0.802
Prob(Omnibus): 0.265 Jarque-Bera (JB): 1.873
Skew: -0.838 Prob(JB): 0.392
Kurtosis: 2.567 Cond. No. 34.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.00629
Time: 11:49:20 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.083
Model: OLS Adj. R-squared: 0.013
Method: Least Squares F-statistic: 1.178
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.297
Time: 11:49:20 Log-Likelihood: -74.649
No. Observations: 15 AIC: 153.3
Df Residuals: 13 BIC: 154.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 178.4388 78.694 2.267 0.041 8.430 348.447
expression -24.8309 22.874 -1.086 0.297 -74.247 24.585
Omnibus: 1.127 Durbin-Watson: 1.545
Prob(Omnibus): 0.569 Jarque-Bera (JB): 0.756
Skew: -0.098 Prob(JB): 0.685
Kurtosis: 1.918 Cond. No. 30.1