AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.025 0.875 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.650
Model: OLS Adj. R-squared: 0.594
Method: Least Squares F-statistic: 11.74
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000141
Time: 04:56:57 Log-Likelihood: -101.04
No. Observations: 23 AIC: 210.1
Df Residuals: 19 BIC: 214.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 47.5855 38.978 1.221 0.237 -33.996 129.167
C(dose)[T.1] 58.9931 78.425 0.752 0.461 -105.153 223.139
expression 2.7762 16.130 0.172 0.865 -30.984 36.536
expression:C(dose)[T.1] -2.3916 31.405 -0.076 0.940 -68.124 63.341
Omnibus: 0.347 Durbin-Watson: 1.923
Prob(Omnibus): 0.841 Jarque-Bera (JB): 0.500
Skew: 0.058 Prob(JB): 0.779
Kurtosis: 2.287 Cond. No. 59.3

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.53
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.80e-05
Time: 04:56:57 Log-Likelihood: -101.05
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 49.0905 32.751 1.499 0.150 -19.226 117.407
C(dose)[T.1] 53.0617 8.934 5.939 0.000 34.426 71.697
expression 2.1453 13.491 0.159 0.875 -25.997 30.288
Omnibus: 0.315 Durbin-Watson: 1.904
Prob(Omnibus): 0.854 Jarque-Bera (JB): 0.481
Skew: 0.055 Prob(JB): 0.786
Kurtosis: 2.300 Cond. No. 21.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:56:57 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.031
Model: OLS Adj. R-squared: -0.015
Method: Least Squares F-statistic: 0.6779
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.420
Time: 04:56:57 Log-Likelihood: -112.74
No. Observations: 23 AIC: 229.5
Df Residuals: 21 BIC: 231.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 36.4536 53.023 0.688 0.499 -73.813 146.720
expression 17.6805 21.473 0.823 0.420 -26.976 62.337
Omnibus: 2.021 Durbin-Watson: 2.541
Prob(Omnibus): 0.364 Jarque-Bera (JB): 1.223
Skew: 0.253 Prob(JB): 0.542
Kurtosis: 1.989 Cond. No. 21.4

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.119 0.736 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.506
Model: OLS Adj. R-squared: 0.371
Method: Least Squares F-statistic: 3.758
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0444
Time: 04:56:57 Log-Likelihood: -70.009
No. Observations: 15 AIC: 148.0
Df Residuals: 11 BIC: 150.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 83.0610 47.388 1.753 0.107 -21.239 187.361
C(dose)[T.1] -36.9203 81.454 -0.453 0.659 -216.198 142.358
expression -5.3208 15.659 -0.340 0.740 -39.786 29.144
expression:C(dose)[T.1] 29.0885 27.045 1.076 0.305 -30.437 88.614
Omnibus: 1.644 Durbin-Watson: 0.691
Prob(Omnibus): 0.440 Jarque-Bera (JB): 1.107
Skew: -0.639 Prob(JB): 0.575
Kurtosis: 2.628 Cond. No. 43.4

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.454
Model: OLS Adj. R-squared: 0.363
Method: Least Squares F-statistic: 4.993
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0264
Time: 04:56:57 Log-Likelihood: -70.759
No. Observations: 15 AIC: 147.5
Df Residuals: 12 BIC: 149.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.4114 39.448 1.379 0.193 -31.539 140.362
C(dose)[T.1] 49.0742 15.666 3.132 0.009 14.940 83.208
expression 4.4307 12.850 0.345 0.736 -23.568 32.429
Omnibus: 2.351 Durbin-Watson: 0.810
Prob(Omnibus): 0.309 Jarque-Bera (JB): 1.710
Skew: -0.787 Prob(JB): 0.425
Kurtosis: 2.493 Cond. No. 17.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:56:57 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.008
Model: OLS Adj. R-squared: -0.068
Method: Least Squares F-statistic: 0.1030
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.753
Time: 04:56:57 Log-Likelihood: -75.241
No. Observations: 15 AIC: 154.5
Df Residuals: 13 BIC: 155.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 77.8944 50.167 1.553 0.144 -30.485 186.274
expression 5.3417 16.641 0.321 0.753 -30.609 41.292
Omnibus: 0.740 Durbin-Watson: 1.608
Prob(Omnibus): 0.691 Jarque-Bera (JB): 0.627
Skew: 0.006 Prob(JB): 0.731
Kurtosis: 1.999 Cond. No. 16.5