AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
6.468 | 0.019 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.735 |
Model: | OLS | Adj. R-squared: | 0.693 |
Method: | Least Squares | F-statistic: | 17.55 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 1.05e-05 |
Time: | 11:49:02 | Log-Likelihood: | -97.838 |
No. Observations: | 23 | AIC: | 203.7 |
Df Residuals: | 19 | BIC: | 208.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 303.7379 | 112.985 | 2.688 | 0.015 | 67.258 540.218 |
C(dose)[T.1] | 52.9811 | 249.148 | 0.213 | 0.834 | -468.491 574.453 |
expression | -27.7357 | 12.544 | -2.211 | 0.039 | -53.991 -1.481 |
expression:C(dose)[T.1] | 1.5311 | 26.502 | 0.058 | 0.955 | -53.938 57.000 |
Omnibus: | 0.805 | Durbin-Watson: | 2.174 |
Prob(Omnibus): | 0.669 | Jarque-Bera (JB): | 0.665 |
Skew: | -0.382 | Prob(JB): | 0.717 |
Kurtosis: | 2.669 | Cond. No. | 701. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.735 |
Model: | OLS | Adj. R-squared: | 0.708 |
Method: | Least Squares | F-statistic: | 27.71 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 1.72e-06 |
Time: | 11:49:02 | Log-Likelihood: | -97.840 |
No. Observations: | 23 | AIC: | 201.7 |
Df Residuals: | 20 | BIC: | 205.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 300.6518 | 97.047 | 3.098 | 0.006 | 98.215 503.089 |
C(dose)[T.1] | 67.3642 | 9.409 | 7.159 | 0.000 | 47.736 86.992 |
expression | -27.3926 | 10.771 | -2.543 | 0.019 | -49.861 -4.925 |
Omnibus: | 0.850 | Durbin-Watson: | 2.169 |
Prob(Omnibus): | 0.654 | Jarque-Bera (JB): | 0.693 |
Skew: | -0.393 | Prob(JB): | 0.707 |
Kurtosis: | 2.674 | Cond. No. | 239. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 11:49:02 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.055 |
Model: | OLS | Adj. R-squared: | 0.010 |
Method: | Least Squares | F-statistic: | 1.227 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.280 |
Time: | 11:49:02 | Log-Likelihood: | -112.45 |
No. Observations: | 23 | AIC: | 228.9 |
Df Residuals: | 21 | BIC: | 231.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -84.8617 | 148.720 | -0.571 | 0.574 | -394.142 224.419 |
expression | 17.8085 | 16.075 | 1.108 | 0.280 | -15.620 51.237 |
Omnibus: | 3.909 | Durbin-Watson: | 2.275 |
Prob(Omnibus): | 0.142 | Jarque-Bera (JB): | 1.620 |
Skew: | 0.248 | Prob(JB): | 0.445 |
Kurtosis: | 1.798 | Cond. No. | 198. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.094 | 0.765 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.606 |
Model: | OLS | Adj. R-squared: | 0.498 |
Method: | Least Squares | F-statistic: | 5.629 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.0138 |
Time: | 11:49:02 | Log-Likelihood: | -68.323 |
No. Observations: | 15 | AIC: | 144.6 |
Df Residuals: | 11 | BIC: | 147.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -185.5595 | 216.461 | -0.857 | 0.410 | -661.986 290.867 |
C(dose)[T.1] | 681.3321 | 307.914 | 2.213 | 0.049 | 3.618 1359.046 |
expression | 29.5133 | 25.224 | 1.170 | 0.267 | -26.005 85.031 |
expression:C(dose)[T.1] | -75.5532 | 36.634 | -2.062 | 0.064 | -156.184 5.078 |
Omnibus: | 0.809 | Durbin-Watson: | 1.477 |
Prob(Omnibus): | 0.667 | Jarque-Bera (JB): | 0.539 |
Skew: | -0.430 | Prob(JB): | 0.764 |
Kurtosis: | 2.648 | Cond. No. | 497. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.453 |
Model: | OLS | Adj. R-squared: | 0.362 |
Method: | Least Squares | F-statistic: | 4.970 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.0268 |
Time: | 11:49:02 | Log-Likelihood: | -70.775 |
No. Observations: | 15 | AIC: | 147.5 |
Df Residuals: | 12 | BIC: | 149.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 121.4861 | 177.156 | 0.686 | 0.506 | -264.503 507.475 |
C(dose)[T.1] | 47.0724 | 17.149 | 2.745 | 0.018 | 9.709 84.436 |
expression | -6.3063 | 20.624 | -0.306 | 0.765 | -51.241 38.629 |
Omnibus: | 2.618 | Durbin-Watson: | 0.850 |
Prob(Omnibus): | 0.270 | Jarque-Bera (JB): | 1.773 |
Skew: | -0.823 | Prob(JB): | 0.412 |
Kurtosis: | 2.647 | Cond. No. | 193. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.00629 |
Time: | 11:49:02 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.110 |
Model: | OLS | Adj. R-squared: | 0.041 |
Method: | Least Squares | F-statistic: | 1.600 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.228 |
Time: | 11:49:02 | Log-Likelihood: | -74.430 |
No. Observations: | 15 | AIC: | 152.9 |
Df Residuals: | 13 | BIC: | 154.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 339.0399 | 194.220 | 1.746 | 0.104 | -80.548 758.628 |
expression | -29.2376 | 23.114 | -1.265 | 0.228 | -79.173 20.698 |
Omnibus: | 0.858 | Durbin-Watson: | 1.701 |
Prob(Omnibus): | 0.651 | Jarque-Bera (JB): | 0.480 |
Skew: | -0.419 | Prob(JB): | 0.786 |
Kurtosis: | 2.745 | Cond. No. | 173. |