AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.406 0.250 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.691
Model: OLS Adj. R-squared: 0.642
Method: Least Squares F-statistic: 14.14
Date: Thu, 21 Nov 2024 Prob (F-statistic): 4.42e-05
Time: 04:47:16 Log-Likelihood: -99.611
No. Observations: 23 AIC: 207.2
Df Residuals: 19 BIC: 211.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 0.2148 35.233 0.006 0.995 -73.530 73.959
C(dose)[T.1] 130.6886 71.632 1.824 0.084 -19.239 280.616
expression 10.9439 7.043 1.554 0.137 -3.796 25.684
expression:C(dose)[T.1] -15.8667 14.856 -1.068 0.299 -46.962 15.228
Omnibus: 0.601 Durbin-Watson: 1.287
Prob(Omnibus): 0.741 Jarque-Bera (JB): 0.685
Skew: -0.276 Prob(JB): 0.710
Kurtosis: 2.360 Cond. No. 100.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.672
Model: OLS Adj. R-squared: 0.639
Method: Least Squares F-statistic: 20.50
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.44e-05
Time: 04:47:16 Log-Likelihood: -100.28
No. Observations: 23 AIC: 206.6
Df Residuals: 20 BIC: 210.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 17.8057 31.256 0.570 0.575 -47.393 83.004
C(dose)[T.1] 54.7298 8.558 6.395 0.000 36.878 72.581
expression 7.3784 6.223 1.186 0.250 -5.602 20.359
Omnibus: 0.529 Durbin-Watson: 1.424
Prob(Omnibus): 0.768 Jarque-Bera (JB): 0.601
Skew: -0.100 Prob(JB): 0.740
Kurtosis: 2.234 Cond. No. 37.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:47:17 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.002
Model: OLS Adj. R-squared: -0.046
Method: Least Squares F-statistic: 0.03334
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.857
Time: 04:47:17 Log-Likelihood: -113.09
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 70.4349 51.348 1.372 0.185 -36.349 177.219
expression 1.9165 10.497 0.183 0.857 -19.912 23.745
Omnibus: 3.143 Durbin-Watson: 2.444
Prob(Omnibus): 0.208 Jarque-Bera (JB): 1.584
Skew: 0.318 Prob(JB): 0.453
Kurtosis: 1.882 Cond. No. 36.3

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.704 0.418 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.546
Model: OLS Adj. R-squared: 0.423
Method: Least Squares F-statistic: 4.418
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0286
Time: 04:47:17 Log-Likelihood: -69.370
No. Observations: 15 AIC: 146.7
Df Residuals: 11 BIC: 149.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -51.1910 78.625 -0.651 0.528 -224.242 121.860
C(dose)[T.1] 184.0908 108.468 1.697 0.118 -54.645 422.827
expression 22.8571 15.004 1.523 0.156 -10.167 55.881
expression:C(dose)[T.1] -25.8491 20.257 -1.276 0.228 -70.434 18.736
Omnibus: 3.639 Durbin-Watson: 1.164
Prob(Omnibus): 0.162 Jarque-Bera (JB): 1.835
Skew: -0.846 Prob(JB): 0.399
Kurtosis: 3.273 Cond. No. 110.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.479
Model: OLS Adj. R-squared: 0.393
Method: Least Squares F-statistic: 5.523
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0199
Time: 04:47:17 Log-Likelihood: -70.406
No. Observations: 15 AIC: 146.8
Df Residuals: 12 BIC: 148.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 22.4076 54.816 0.409 0.690 -97.026 141.842
C(dose)[T.1] 47.0304 15.514 3.032 0.010 13.229 80.832
expression 8.6752 10.341 0.839 0.418 -13.856 31.206
Omnibus: 1.633 Durbin-Watson: 0.888
Prob(Omnibus): 0.442 Jarque-Bera (JB): 1.283
Skew: -0.642 Prob(JB): 0.527
Kurtosis: 2.363 Cond. No. 40.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:47:17 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.081
Model: OLS Adj. R-squared: 0.010
Method: Least Squares F-statistic: 1.139
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.305
Time: 04:47:17 Log-Likelihood: -74.670
No. Observations: 15 AIC: 153.3
Df Residuals: 13 BIC: 154.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 19.7196 69.975 0.282 0.783 -131.453 170.892
expression 13.8925 13.018 1.067 0.305 -14.232 42.017
Omnibus: 2.368 Durbin-Watson: 1.667
Prob(Omnibus): 0.306 Jarque-Bera (JB): 1.453
Skew: 0.515 Prob(JB): 0.483
Kurtosis: 1.875 Cond. No. 39.9