AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.008 | 0.929 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.663 |
Model: | OLS | Adj. R-squared: | 0.610 |
Method: | Least Squares | F-statistic: | 12.48 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 9.73e-05 |
Time: | 05:12:47 | Log-Likelihood: | -100.59 |
No. Observations: | 23 | AIC: | 209.2 |
Df Residuals: | 19 | BIC: | 213.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 29.9655 | 38.192 | 0.785 | 0.442 | -49.972 109.903 |
C(dose)[T.1] | 106.9940 | 61.009 | 1.754 | 0.096 | -20.700 234.688 |
expression | 5.9197 | 9.206 | 0.643 | 0.528 | -13.349 25.189 |
expression:C(dose)[T.1] | -12.7350 | 14.286 | -0.891 | 0.384 | -42.636 17.167 |
Omnibus: | 0.192 | Durbin-Watson: | 1.859 |
Prob(Omnibus): | 0.908 | Jarque-Bera (JB): | 0.266 |
Skew: | -0.185 | Prob(JB): | 0.875 |
Kurtosis: | 2.625 | Cond. No. | 77.6 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.51 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.82e-05 |
Time: | 05:12:47 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 51.6236 | 29.316 | 1.761 | 0.094 | -9.528 112.776 |
C(dose)[T.1] | 53.1979 | 8.903 | 5.975 | 0.000 | 34.626 71.769 |
expression | 0.6311 | 7.004 | 0.090 | 0.929 | -13.978 15.240 |
Omnibus: | 0.337 | Durbin-Watson: | 1.890 |
Prob(Omnibus): | 0.845 | Jarque-Bera (JB): | 0.493 |
Skew: | 0.051 | Prob(JB): | 0.781 |
Kurtosis: | 2.290 | Cond. No. | 30.2 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:12:47 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.023 |
Model: | OLS | Adj. R-squared: | -0.024 |
Method: | Least Squares | F-statistic: | 0.4936 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.490 |
Time: | 05:12:47 | Log-Likelihood: | -112.84 |
No. Observations: | 23 | AIC: | 229.7 |
Df Residuals: | 21 | BIC: | 231.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 46.5642 | 47.726 | 0.976 | 0.340 | -52.687 145.815 |
expression | 7.8921 | 11.233 | 0.703 | 0.490 | -15.469 31.253 |
Omnibus: | 1.639 | Durbin-Watson: | 2.356 |
Prob(Omnibus): | 0.441 | Jarque-Bera (JB): | 1.222 |
Skew: | 0.340 | Prob(JB): | 0.543 |
Kurtosis: | 2.099 | Cond. No. | 30.0 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.131 | 0.724 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.456 |
Model: | OLS | Adj. R-squared: | 0.308 |
Method: | Least Squares | F-statistic: | 3.074 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0727 |
Time: | 05:12:47 | Log-Likelihood: | -70.734 |
No. Observations: | 15 | AIC: | 149.5 |
Df Residuals: | 11 | BIC: | 152.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 93.9046 | 135.733 | 0.692 | 0.503 | -204.841 392.650 |
C(dose)[T.1] | 81.8902 | 225.706 | 0.363 | 0.724 | -414.885 578.665 |
expression | -4.3208 | 22.066 | -0.196 | 0.848 | -52.887 44.245 |
expression:C(dose)[T.1] | -6.4077 | 39.395 | -0.163 | 0.874 | -93.115 80.299 |
Omnibus: | 2.689 | Durbin-Watson: | 0.939 |
Prob(Omnibus): | 0.261 | Jarque-Bera (JB): | 1.695 |
Skew: | -0.816 | Prob(JB): | 0.428 |
Kurtosis: | 2.775 | Cond. No. | 203. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.455 |
Model: | OLS | Adj. R-squared: | 0.364 |
Method: | Least Squares | F-statistic: | 5.003 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0263 |
Time: | 05:12:47 | Log-Likelihood: | -70.752 |
No. Observations: | 15 | AIC: | 147.5 |
Df Residuals: | 12 | BIC: | 149.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 106.2229 | 107.975 | 0.984 | 0.345 | -129.035 341.480 |
C(dose)[T.1] | 45.3194 | 18.979 | 2.388 | 0.034 | 3.967 86.671 |
expression | -6.3311 | 17.522 | -0.361 | 0.724 | -44.509 31.847 |
Omnibus: | 2.834 | Durbin-Watson: | 0.970 |
Prob(Omnibus): | 0.242 | Jarque-Bera (JB): | 1.840 |
Skew: | -0.848 | Prob(JB): | 0.398 |
Kurtosis: | 2.737 | Cond. No. | 83.6 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:12:47 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.196 |
Model: | OLS | Adj. R-squared: | 0.134 |
Method: | Least Squares | F-statistic: | 3.161 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0988 |
Time: | 05:12:47 | Log-Likelihood: | -73.668 |
No. Observations: | 15 | AIC: | 151.3 |
Df Residuals: | 13 | BIC: | 152.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 267.6163 | 98.258 | 2.724 | 0.017 | 55.342 479.891 |
expression | -29.9865 | 16.865 | -1.778 | 0.099 | -66.422 6.449 |
Omnibus: | 0.033 | Durbin-Watson: | 1.593 |
Prob(Omnibus): | 0.983 | Jarque-Bera (JB): | 0.201 |
Skew: | -0.090 | Prob(JB): | 0.904 |
Kurtosis: | 2.462 | Cond. No. | 64.6 |