AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
6.926 0.016 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.748
Model: OLS Adj. R-squared: 0.708
Method: Least Squares F-statistic: 18.81
Date: Thu, 21 Nov 2024 Prob (F-statistic): 6.50e-06
Time: 04:30:26 Log-Likelihood: -97.248
No. Observations: 23 AIC: 202.5
Df Residuals: 19 BIC: 207.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -17.3724 56.439 -0.308 0.762 -135.500 100.755
C(dose)[T.1] -3.5631 77.694 -0.046 0.964 -166.179 159.053
expression 9.9156 7.784 1.274 0.218 -6.376 26.208
expression:C(dose)[T.1] 8.9983 11.033 0.816 0.425 -14.093 32.090
Omnibus: 1.576 Durbin-Watson: 2.211
Prob(Omnibus): 0.455 Jarque-Bera (JB): 1.114
Skew: -0.270 Prob(JB): 0.573
Kurtosis: 2.067 Cond. No. 190.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.739
Model: OLS Adj. R-squared: 0.713
Method: Least Squares F-statistic: 28.36
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.45e-06
Time: 04:30:26 Log-Likelihood: -97.643
No. Observations: 23 AIC: 201.3
Df Residuals: 20 BIC: 204.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -49.7074 39.832 -1.248 0.226 -132.795 33.380
C(dose)[T.1] 59.4701 7.909 7.519 0.000 42.971 75.969
expression 14.3948 5.470 2.632 0.016 2.985 25.805
Omnibus: 5.223 Durbin-Watson: 2.318
Prob(Omnibus): 0.073 Jarque-Bera (JB): 1.747
Skew: -0.189 Prob(JB): 0.418
Kurtosis: 1.704 Cond. No. 76.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:30:26 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.002
Model: OLS Adj. R-squared: -0.045
Method: Least Squares F-statistic: 0.05206
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.822
Time: 04:30:26 Log-Likelihood: -113.08
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 63.7449 70.373 0.906 0.375 -82.604 210.094
expression 2.2768 9.979 0.228 0.822 -18.475 23.029
Omnibus: 3.543 Durbin-Watson: 2.524
Prob(Omnibus): 0.170 Jarque-Bera (JB): 1.575
Skew: 0.263 Prob(JB): 0.455
Kurtosis: 1.831 Cond. No. 70.2

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.197 0.665 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.462
Model: OLS Adj. R-squared: 0.316
Method: Least Squares F-statistic: 3.152
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0685
Time: 04:30:27 Log-Likelihood: -70.647
No. Observations: 15 AIC: 149.3
Df Residuals: 11 BIC: 152.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 48.3884 80.301 0.603 0.559 -128.352 225.129
C(dose)[T.1] -4.5035 175.385 -0.026 0.980 -390.524 381.517
expression 2.6084 10.880 0.240 0.815 -21.339 26.556
expression:C(dose)[T.1] 7.3370 23.887 0.307 0.764 -45.237 59.911
Omnibus: 2.260 Durbin-Watson: 0.747
Prob(Omnibus): 0.323 Jarque-Bera (JB): 1.643
Skew: -0.652 Prob(JB): 0.440
Kurtosis: 2.036 Cond. No. 193.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.458
Model: OLS Adj. R-squared: 0.367
Method: Least Squares F-statistic: 5.063
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0254
Time: 04:30:27 Log-Likelihood: -70.711
No. Observations: 15 AIC: 147.4
Df Residuals: 12 BIC: 149.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 37.2765 68.932 0.541 0.599 -112.913 187.466
C(dose)[T.1] 49.1367 15.613 3.147 0.008 15.119 83.154
expression 4.1307 9.313 0.444 0.665 -16.161 24.423
Omnibus: 2.159 Durbin-Watson: 0.734
Prob(Omnibus): 0.340 Jarque-Bera (JB): 1.662
Skew: -0.740 Prob(JB): 0.436
Kurtosis: 2.316 Cond. No. 66.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:30:27 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.010
Model: OLS Adj. R-squared: -0.066
Method: Least Squares F-statistic: 0.1315
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.723
Time: 04:30:27 Log-Likelihood: -75.225
No. Observations: 15 AIC: 154.4
Df Residuals: 13 BIC: 155.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 61.6357 88.913 0.693 0.500 -130.449 253.720
expression 4.3835 12.089 0.363 0.723 -21.733 30.500
Omnibus: 0.622 Durbin-Watson: 1.599
Prob(Omnibus): 0.733 Jarque-Bera (JB): 0.593
Skew: 0.088 Prob(JB): 0.743
Kurtosis: 2.042 Cond. No. 65.9