AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.665 0.212 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.809
Model: OLS Adj. R-squared: 0.778
Method: Least Squares F-statistic: 26.77
Date: Thu, 21 Nov 2024 Prob (F-statistic): 4.94e-07
Time: 05:06:01 Log-Likelihood: -94.086
No. Observations: 23 AIC: 196.2
Df Residuals: 19 BIC: 200.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -68.6616 63.127 -1.088 0.290 -200.788 63.465
C(dose)[T.1] 320.9876 75.820 4.234 0.000 162.295 479.681
expression 29.8611 15.301 1.952 0.066 -2.165 61.887
expression:C(dose)[T.1] -68.9728 19.004 -3.629 0.002 -108.749 -29.197
Omnibus: 0.463 Durbin-Watson: 1.638
Prob(Omnibus): 0.793 Jarque-Bera (JB): 0.578
Skew: 0.256 Prob(JB): 0.749
Kurtosis: 2.415 Cond. No. 132.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.676
Model: OLS Adj. R-squared: 0.644
Method: Least Squares F-statistic: 20.87
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.27e-05
Time: 05:06:01 Log-Likelihood: -100.14
No. Observations: 23 AIC: 206.3
Df Residuals: 20 BIC: 209.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 115.3208 47.715 2.417 0.025 15.789 214.853
C(dose)[T.1] 47.2032 9.674 4.879 0.000 27.023 67.384
expression -14.8522 11.509 -1.290 0.212 -38.860 9.156
Omnibus: 1.236 Durbin-Watson: 2.092
Prob(Omnibus): 0.539 Jarque-Bera (JB): 0.936
Skew: 0.474 Prob(JB): 0.626
Kurtosis: 2.721 Cond. No. 48.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:06:02 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.290
Model: OLS Adj. R-squared: 0.257
Method: Least Squares F-statistic: 8.594
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00797
Time: 05:06:02 Log-Likelihood: -109.16
No. Observations: 23 AIC: 222.3
Df Residuals: 21 BIC: 224.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 245.9787 57.039 4.312 0.000 127.359 364.598
expression -42.4440 14.478 -2.932 0.008 -72.553 -12.335
Omnibus: 0.621 Durbin-Watson: 2.466
Prob(Omnibus): 0.733 Jarque-Bera (JB): 0.655
Skew: -0.136 Prob(JB): 0.721
Kurtosis: 2.219 Cond. No. 39.3

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.065 0.803 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.476
Model: OLS Adj. R-squared: 0.333
Method: Least Squares F-statistic: 3.332
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0600
Time: 05:06:02 Log-Likelihood: -70.451
No. Observations: 15 AIC: 148.9
Df Residuals: 11 BIC: 151.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 61.0086 71.347 0.855 0.411 -96.025 218.042
C(dose)[T.1] 159.7782 156.159 1.023 0.328 -183.926 503.482
expression 1.5420 16.904 0.091 0.929 -35.664 38.748
expression:C(dose)[T.1] -27.4214 38.333 -0.715 0.489 -111.793 56.950
Omnibus: 2.324 Durbin-Watson: 1.015
Prob(Omnibus): 0.313 Jarque-Bera (JB): 1.085
Skew: -0.657 Prob(JB): 0.581
Kurtosis: 3.102 Cond. No. 101.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.452
Model: OLS Adj. R-squared: 0.360
Method: Least Squares F-statistic: 4.944
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0272
Time: 05:06:02 Log-Likelihood: -70.792
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 83.2102 62.922 1.322 0.211 -53.886 220.306
C(dose)[T.1] 48.6711 15.832 3.074 0.010 14.177 83.165
expression -3.7905 14.860 -0.255 0.803 -36.168 28.587
Omnibus: 2.548 Durbin-Watson: 0.799
Prob(Omnibus): 0.280 Jarque-Bera (JB): 1.758
Skew: -0.815 Prob(JB): 0.415
Kurtosis: 2.608 Cond. No. 35.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:06:02 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.020
Model: OLS Adj. R-squared: -0.055
Method: Least Squares F-statistic: 0.2645
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.616
Time: 05:06:02 Log-Likelihood: -75.149
No. Observations: 15 AIC: 154.3
Df Residuals: 13 BIC: 155.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 133.4718 78.051 1.710 0.111 -35.148 302.091
expression -9.7334 18.926 -0.514 0.616 -50.621 31.155
Omnibus: 0.491 Durbin-Watson: 1.539
Prob(Omnibus): 0.782 Jarque-Bera (JB): 0.536
Skew: 0.011 Prob(JB): 0.765
Kurtosis: 2.074 Cond. No. 33.8