AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.001 | 0.329 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.678 |
Model: | OLS | Adj. R-squared: | 0.627 |
Method: | Least Squares | F-statistic: | 13.34 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 6.40e-05 |
Time: | 05:07:24 | Log-Likelihood: | -100.07 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 19 | BIC: | 212.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 51.5882 | 125.838 | 0.410 | 0.686 | -211.794 314.970 |
C(dose)[T.1] | -91.9291 | 169.214 | -0.543 | 0.593 | -446.099 262.241 |
expression | 0.3855 | 18.494 | 0.021 | 0.984 | -38.323 39.094 |
expression:C(dose)[T.1] | 21.0829 | 24.717 | 0.853 | 0.404 | -30.650 72.816 |
Omnibus: | 4.023 | Durbin-Watson: | 1.883 |
Prob(Omnibus): | 0.134 | Jarque-Bera (JB): | 1.810 |
Skew: | 0.347 | Prob(JB): | 0.404 |
Kurtosis: | 1.814 | Cond. No. | 366. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.666 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 19.92 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.74e-05 |
Time: | 05:07:24 | Log-Likelihood: | -100.50 |
No. Observations: | 23 | AIC: | 207.0 |
Df Residuals: | 20 | BIC: | 210.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -28.6348 | 83.033 | -0.345 | 0.734 | -201.838 144.568 |
C(dose)[T.1] | 52.2161 | 8.631 | 6.050 | 0.000 | 34.211 70.221 |
expression | 12.1889 | 12.186 | 1.000 | 0.329 | -13.230 37.608 |
Omnibus: | 2.709 | Durbin-Watson: | 1.940 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.351 |
Skew: | 0.221 | Prob(JB): | 0.509 |
Kurtosis: | 1.898 | Cond. No. | 136. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:07:24 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.054 |
Model: | OLS | Adj. R-squared: | 0.009 |
Method: | Least Squares | F-statistic: | 1.203 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.285 |
Time: | 05:07:24 | Log-Likelihood: | -112.46 |
No. Observations: | 23 | AIC: | 228.9 |
Df Residuals: | 21 | BIC: | 231.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -69.1359 | 135.868 | -0.509 | 0.616 | -351.689 213.418 |
expression | 21.7603 | 19.836 | 1.097 | 0.285 | -19.490 63.011 |
Omnibus: | 2.083 | Durbin-Watson: | 2.412 |
Prob(Omnibus): | 0.353 | Jarque-Bera (JB): | 1.203 |
Skew: | 0.220 | Prob(JB): | 0.548 |
Kurtosis: | 1.970 | Cond. No. | 135. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.355 | 0.562 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.467 |
Model: | OLS | Adj. R-squared: | 0.321 |
Method: | Least Squares | F-statistic: | 3.206 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0659 |
Time: | 05:07:24 | Log-Likelihood: | -70.588 |
No. Observations: | 15 | AIC: | 149.2 |
Df Residuals: | 11 | BIC: | 152.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 97.3671 | 94.771 | 1.027 | 0.326 | -111.222 305.956 |
C(dose)[T.1] | 74.7556 | 144.075 | 0.519 | 0.614 | -242.352 391.863 |
expression | -4.8767 | 15.317 | -0.318 | 0.756 | -38.589 28.836 |
expression:C(dose)[T.1] | -4.7646 | 24.214 | -0.197 | 0.848 | -58.060 48.531 |
Omnibus: | 1.445 | Durbin-Watson: | 0.827 |
Prob(Omnibus): | 0.486 | Jarque-Bera (JB): | 1.184 |
Skew: | -0.580 | Prob(JB): | 0.553 |
Kurtosis: | 2.261 | Cond. No. | 139. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.465 |
Model: | OLS | Adj. R-squared: | 0.375 |
Method: | Least Squares | F-statistic: | 5.207 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0235 |
Time: | 05:07:24 | Log-Likelihood: | -70.614 |
No. Observations: | 15 | AIC: | 147.2 |
Df Residuals: | 12 | BIC: | 149.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 109.0710 | 70.764 | 1.541 | 0.149 | -45.110 263.252 |
C(dose)[T.1] | 46.5996 | 16.112 | 2.892 | 0.014 | 11.495 81.704 |
expression | -6.7832 | 11.378 | -0.596 | 0.562 | -31.574 18.008 |
Omnibus: | 1.446 | Durbin-Watson: | 0.801 |
Prob(Omnibus): | 0.485 | Jarque-Bera (JB): | 1.180 |
Skew: | -0.588 | Prob(JB): | 0.554 |
Kurtosis: | 2.290 | Cond. No. | 56.5 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:07:24 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.091 |
Model: | OLS | Adj. R-squared: | 0.022 |
Method: | Least Squares | F-statistic: | 1.308 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.273 |
Time: | 05:07:24 | Log-Likelihood: | -74.581 |
No. Observations: | 15 | AIC: | 153.2 |
Df Residuals: | 13 | BIC: | 154.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 186.7279 | 81.947 | 2.279 | 0.040 | 9.693 363.763 |
expression | -15.6804 | 13.711 | -1.144 | 0.273 | -45.301 13.940 |
Omnibus: | 2.402 | Durbin-Watson: | 1.401 |
Prob(Omnibus): | 0.301 | Jarque-Bera (JB): | 1.116 |
Skew: | 0.234 | Prob(JB): | 0.572 |
Kurtosis: | 1.749 | Cond. No. | 52.0 |